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Preface

Symplectic geometry arose as the mathematical framework to describe classical mechanics.
An extension of symplectic geometry is provided by Poisson geometry, and indeed symplectic
manifolds are exactly the non-degenerate Poisson manifolds. Generic Poisson manifolds are
singular objects by nature, and this makes their geometry highly nontrivial and rather wild. It
is therefore desirable to consider Poisson manifolds with well-controlled singularities as more
tractable working examples.

In this thesis, we consider such a class of Poisson manifolds, that in (part of) the literature
is referred to as “log-symplectic manifolds”. They form a convenient intermediate level between
the symplectic world and the generic Poisson world. A log-symplectic structure degenerates
in a mild fashion along a hypersurface, called its singular locus, but it is non-degenerate (i.e.
symplectic) elsewhere. So these structures do not stray too far from being symplectic, and
their behaviour is indeed analogous to that of symplectic structures in many respects. Their
geometry is nontrivial but accessible, and as such log-symplectic structures have become a topic
of intense research during the past 5-6 years.

Broadly speaking, the main question we address in this thesis is the following: “What does
a log-symplectic structure look like near its singular locus?”. Of particular interest to us are
normal form theorems that give model answers to this question. The general theory on log-
symplectic structures that we present should be considered as background material and as a
necessary tool to build towards theorems that answer our core question.

I thank my supervisor, prof. Marco Zambon, for his help and guidance and for providing
a comfortable working climate. I also greatly benefited from the Poisson Geometry Learning
Seminar, organized by Marco Zambon and Ori Yudilevich during the past academic year. It
enabled me to learn from scratch the basics of Poisson geometry in a sensible way.
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Summary

Log-symplectic manifolds, which are the objects under consideration in this thesis, form a
natural generalization of symplectic manifolds that arises in Poisson geometry. We start by
recalling the basics of symplectic geometry in Chapter 1, with emphasis on the Darboux-Moser
theorems. In Chapter 2, we give an introduction to Poisson geometry. Since the author was
not familiar with Poisson geometry prior to writing this thesis, the exposition in Chapter 2 is
rather extensive and detailed.

Having established the needed preliminaries, we introduce log-symplectic structures in Chap-
ter 3. A Poisson bivector ⇧ on a manifold M2n is called log-symplectic if the top wedge power
^n⇧ is transverse to the zero section of the line bundle ^2nTM . The zero set Z = (^n⇧)�1 (0)
where the bivector ⇧ degenerates turns out to be a smooth hypersurface, which we call the
singular locus of ⇧. The first main statement of the thesis is Theorem 3.2.2, which appears in
[GMP2]. It gives the local model for a log-symplectic structure ⇧ around a point in its singular
locus Z, namely

⇧ = y1
@

@x1
^ @

@y1
+

n
X

i=2

@

@xi
^ @

@yi
,

where Z is locally defined by y1 = 0. As a consequence of this normal form, we obtain that the
singular locus Z is a Poisson submanifold, with an induced corank-one Poisson structure.

Log-symplectic structures are described conveniently in the language of b-geometry. This
formalism addresses b-manifolds, which are pairs (M,Z) consisting of a manifold M and a
distinguished hypersurface Z ⇢ M . Following [GMP2] and [MO], Chapter 4 introduces the
basic concepts regarding b-geometry. We fill in some details and proofs that are not given in the
literature. The key result is Theorem 4.2.10, which establishes that log-symplectic structures
are in fact the symplectic structures of the b-category. This point of view allows us to use
symplectic techniques in the study of log-symplectic manifolds. Of particular importance is
the Moser Theorem 4.2.7. We also obtain cohomological obstructions to the existence of a
log-symplectic structure, similar to those in symplectic geometry.

Chapter 5 describes log-symplectic structures semilocally, in a neighborhood of the singular
locus. As such, it is the most important chapter. The second main statement of this thesis is
Theorem 5.2.1, which appeared in [BOT]. It gives a normal form for orientable log-symplectic
structures (M,Z,⇧), valid in a tubular neighborhood U of the singular locus Z:

⇧|U = XZ ^ t
@

@t
+⇧Z ,

where XZ is the restriction to Z of a modular vector field on M and ⇧Z is the restriction of ⇧ to
Z $ {t = 0}. The second half of Chapter 5 is dedicated to log-symplectic extensions of corank-
one Poisson structures. Following [GMP2], Theorem 5.3.1 determines when a given corank-one
Poisson manifold (Z,⇧Z) arises as the singular locus of a log-symplectic structure. Next, we
ask ourselves to what extent such a log-symplectic extension is unique. We answer this question
in Subsection 5.3.2, most of which is our own work: the material in question is also addressed
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in [GMP2], but some parts of the exposition given there need fixing (see Remark 5.3.12). As
such, not all statements we present in Subsection 5.3.2 are original, but most of the proofs
are. In particular, we prove the third main result of the thesis in Theorem 5.3.13, which states
that, up to an appropriate notion of equivalence, the log-symplectic extensions of a corank-one
Poisson structure (Z,⇧Z), defined on some tubular neighborhood of Z, are parametrized by the
cohomology classes in H1

⇧
Z

(Z) of Poisson vector fields on Z that are transverse to the symplectic
leaves.

In Chapter 6, we give a description of compact corank-one Poisson manifolds endowed
with a closed one-form defining the symplectic foliation, and a closed two-form extending the
symplectic form on each leaf. Following [GMP1], we define two foliation invariants and we show
that such Poisson manifolds are in fact mapping tori, whence fibrations over the circle S1. The
results in this chapter apply in particular to the singular locus of a log-symplectic structure.

At last, in Chapter 7, we scratch the surface of some aspects of log-symplectic structures
that were not treated in detail in this thesis.
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Chapter 1

Preliminary Symplectic Geometry

Symplectic geometry is a branch in di↵erential geometry that studies symplectic manifolds.
It arose as the mathematical framework to describe classical mechanics. Nowadays, it is an
independent field of study, significantly stimulated by interactions with mathematical physics
and topology, amongst others.

In this thesis, we study an extension of symplectic manifolds, called log-symplectic manifolds.
Their behaviour is in many respects similar to that of symplectic manifolds, and many results
about symplectic structures can be generalized to the log-symplectic setting. In this preliminary
chapter, we recall some of the main concepts in symplectic geometry. It will be interesting to
see how these relate to their log-symplectic analogs.

This chapter is based on the lectures of the course “Symplectic Geometry” taught at KU
Leuven. Most of what is written below can also be found in [Ca].

1.1 Symplectic vector spaces

Definition 1.1.1. A symplectic vector space is a pair (V,⌦), where V is a real, finite dimen-
sional vector space and ⌦ : V ⇥ V ! R is a bilinear form which is:

(i) Skew-symmetric: ⌦(v, w) = �⌦(w, v) for all v, w 2 V .

(ii) Non-degenerate: Ker(⌦) := {v 2 V : ⌦(v, w) = 0 8w 2 V } = {0}.

Remark 1.1.2. With a bilinear form ⌦ comes a linear map

e⌦ : V ! V ⇤ : v 7! ⌦(·, v).

Non-degeneracy of ⌦ is equivalent with e⌦ being an isomorphism. Now let � = {v1, . . . , vn} be
a basis of V , and let �⇤ = {v⇤1, . . . , v⇤n} be the dual basis of V ⇤. Then the matrix of e⌦ with
respect to the bases � and �⇤ coincides with the matrix of ⌦ with respect to the basis �. Indeed,
denoting B = [e⌦]�

⇤

� , we have

e⌦(vj) =
n
X

k=1

Bk,j↵k,

which implies

⌦(vi, vj) = e⌦(vj)(vi) = Bi,j .

Hence, to see if ⌦ is non-degenerate, one only needs to check if its matrix is invertible.

1



Example 1.1.3. On R2n, denote the canonical basis by {e1, f1, . . . , en, fn}. We define the
canonical bilinear form ⌦can by the rules

8

>

<

>

:

⌦can(ei, ej) = 0

⌦can(fi, fj) = 0

⌦can(ei, fj) = �i,j

for all i, j 2 {1, . . . , n},

also imposing bilinearity and skew-symmetry. Note that the matrix of ⌦can with respect to this
basis is

[⌦can] =

2

6

6

6

6

6

4

0 1
�1 0 0

. . .

0 0 1
�1 0

3

7

7

7

7

7

5

. (1.1)

Since this matrix is invertible, it follows that ⌦can is non-degenerate. Hence (R2n,⌦can) is a
symplectic vector space.

Definition 1.1.4. A symplectomorphism between symplectic vector spaces (V1,⌦1) and (V2,⌦2)
is an isomorphism of vector spaces f : V1 ! V2 such that f⇤⌦2 = ⌦1. Here f⇤ is the pullback,
defined as

�

f⇤⌦2

�

(v, w) = ⌦2

�

f(v), f(w)
�

for all v, w 2 V1.

Example 1.1.3 is prototypical:

Proposition 1.1.5. Let (V,⌦) be a symplectic vector space. Then dim(V ) = 2n for some
n 2 N, and (V,⌦) is symplectomorphic to (R2n,⌦can).

Proof. Firstly, the standard form theorem for skew-symmetric bilinear maps (Proposition 8.1.1
in the appendix) implies that the rank of ⌦ is even. Since by assumption, rank(⌦) = dim(V ),
we get that dim(V ) = 2n for some n 2 N. Moreover, the standard form theorem gives a basis
{v1, w1, . . . , vn, wn} of V with respect to which the matrix of ⌦ has the form (1.1). Hence, the
map

f : (V,⌦)! (R2n,⌦can) :

(

vi 7! ei

wi 7! fi
for i = 1, . . . , n

is the desired symplectomorphism.

1.2 Symplectic manifolds

Definition 1.2.1. A symplectic manifold is a pair (M,!) where M is a smooth manifold and
! 2 ⌦2(M) is a 2-form such that:

(i) ! is closed, i.e. d! = 0.

(ii) !p : TpM ⇥ TpM ! R is non-degenerate, for all p 2M .

Remark 1.2.2. A two-form ! on M is completely determined by its associated vector bundle
map ![ : TM ! T ⇤M , that on the level of sections is given by contraction of !:

![ : X(M)! ⌦1(M) : X 7! ◆X!.

Non-degeneracy of ! is equivalent with ![ being a linear isomorphism in the fibers, that is, ![

being a vector bundle isomorphism.

2



Example 1.2.3. Consider R2n with canonical basis {e1, f1, . . . , en, fn} and induced coordinates
(q1, p1, . . . , qn, pn). Then ! =

Pn
i=1 dqi ^ dpi is a symplectic form. Indeed, at any point x 2M

we have a basis
⇢

@

@q1

�

�

�

�

x

,
@

@p1

�

�

�

�

x

, . . . ,
@

@qn

�

�

�

�

x

,
@

@pn

�

�

�

�

x

�

of TxR2n, and under the isomorphism

TxR2n ! R2n :

8

<

:

@
@q

i

�

�

�

x
7! ei

@
@p

i

�

�

�

x
7! fi

,

!x corresponds with ⌦can. As ⌦can is non-degenerate, so is !x. Closedness of ! is clear.

The Darboux Theorem, which will be proved later, says that Example 1.2.3 is the local
model for all symplectic manifolds.

Example 1.2.4. LetM be an orientable surface. Then any volume form ! onM is a symplectic
form. Indeed, closedness is automatic since M is 2-dimensional:

(d!)p 2 ^3T ⇤
pM = {0}.

Non-degeneracy is argued for as follows. Let p 2 M and choose a basis {v1, v2} of TpM . Since
!p is nonzero, we have that !p(v1, v2) 6= 0. Now assume that v 2 TpM is such that !p(v, w) = 0
for all w 2 TpM . Writing v = �1v1 + �2v2, we get in particular

(

0 = !p(v, v1) = ��2!p(v1, v2)

0 = !p(v, v2) = �1!p(v1, v2)
.

As !p(v1, v2) 6= 0, this implies that �1 = �2 = 0, hence v = 0.

Example 1.2.5. If Q is any manifold, then its cotangent bundle T ⇤Q is symplectic in a canon-
ical way. Denote by ⇡ : T ⇤Q ! Q : f 2 T ⇤

xQ 7! x the bundle projection. The tautological
one-form ✓ 2 ⌦1(T ⇤Q) is defined by

✓⇠(v) = h⇠,⇡⇤vi for ⇠ 2 T ⇤
⇡(⇠)Q and v 2 T⇠(T

⇤Q),

where h·, ·i is the pairing between T⇡(⇠)Q and T ⇤
⇡(⇠)Q. We now coordinatize T ⇤Q as follows.

Choosing local coordinates (U, q1, . . . , qn) on Q defines a local frame {dq1, . . . , dqn} of sections
for T ⇤Q. For all x 2 U , we get a basis {dxq1, . . . , dxqn} of T ⇤

xQ and the coordinates it induces
on T ⇤

xQ will be called (p1, . . . , pn). We thus obtain coordinates (⇡⇤q1, . . . ,⇡⇤qn, p1, . . . , pn) on
T ⇤Q|U . We keep writing qi instead of ⇡⇤qi. In these coordinates, we have

✓ =
n
X

i=1

pidqi.

Indeed, since ⇡ : T ⇤Q! Q : (q, p) 7! q, we have

⇡⇤ =
@(q1, . . . , qn)

@(q1, . . . , qn, p1, . . . , pn)
= [In⇥n | 0n⇥n],

which gives

✓(q,p)

 

n
X

i=1

ai
@

@qi
+ bi

@

@pi

!

=

*

n
X

i=1

pidqi,⇡⇤

 

n
X

i=1

ai
@

@qi
+ bi

@

@pi

!+
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=

*

n
X

i=1

pidqi,
n
X

i=1

ai
@

@qi

+

=
n
X

i=1

piai

=

 

n
X

i=1

pidqi

! 

n
X

i=1

ai
@

@qi
+ bi

@

@pi

!

.

We now define ! := �d✓. It is an exact, hence closed 2-form. And ! is non-degenerate: in
coordinates it is given by

! = �d
 

n
X

i=1

pidqi

!

=
n
X

i=1

dqi ^ dpi,

and this form is non-degenerate by the same argument as in Example 1.2.3.

Definition 1.2.6. A symplectomorphism between symplectic manifolds (M1,!1) and (M2,!2)
is a di↵eomorphism f : M1 !M2 that satisfies f⇤!2 = !1.

Not all manifolds are symplectic. We now present some obstructions to the existence of a
symplectic structure.

Proposition 1.2.7. Let (M,!) be a symplectic manifold. Then dim(M) is even and M is
orientable.

Proof. We have for all p 2M that (TpM,!p) is a symplectic vector space. By Proposition 1.1.5,
we get that dim(M) = dim(TpM) is even. Let dim(M) = 2n. As for the orientability of M , we
just have to note that !n is a volume form on M . Indeed, !n is nowhere vanishing by Lemma
8.1.2 in the appendix.

The next proposition gives cohomological obstructions to the existence of a symplectic struc-
ture. Recall that for all l 2 {0, . . . , dim(M)}, the l-th de Rham cohomology group is defined
as

H l(M) =
{closed l-forms}
{exact l-forms} =

{� 2 ⌦l(M) : d� = 0}
{� 2 ⌦l(M) : 9↵ 2 ⌦l�1(M) : � = d↵} .

Proposition 1.2.8. Let (M2n,!) be a compact symplectic manifold. Then for all k 2 {1, . . . , n},
the de Rham cohomology class [!k] 2 H2k(M) is nonzero.

Proof. First assume by contradiction that [!n] 2 H2n(M) is zero. Then !n is exact, i.e. there
exists ↵ 2 ⌦2n�1(M) such that !n = d↵. Making essential use of compactness of M and Stokes’
theorem, we get

0 6= Vol(M) =
1

n!

Z

M
!n =

1

n!

Z

M
d↵ =

1

n!

Z

@M
↵ = 0,

where the last equality holds since @M = ;. This contradiction shows that [!n] 6= 0. Next, if
[!k] were zero for some k 2 {1, . . . , n� 1}, then

[!n] = [!k] ^ [!n�k] = 0,

which contradicts what we just proved.

4



Example 1.2.9. For all n � 1, the sphere S2n admits a symplectic form if and only if n = 1.
Clearly, since S2 is an orientable surface, it is symplectic by Example 1.2.4. Noting that

Hk(S2n) =

(

R if k = 0 or k = 2n

0 otherwise
,

we see that H2(S2n) = 0 when n 6= 1. By Proposition 1.2.8, S2n is not symplectic for n > 1.

1.3 Darboux-Moser theorems

In this section, we discuss some local theory of symplectic manifolds. An important result is
Moser’s trick, which is a useful tool in deciding whether symplectic structures are equivalent. It
will allow us to prove the Darboux theorem, which establishes a local normal form for symplectic
manifolds.

Definition 1.3.1. Let M be a manifold. An isotopy is a smooth family {⇢t}t2I of di↵eomor-
phisms of M , where I is an invertal containing 0 and ⇢0 = IdM . Stated otherwise, an isotopy
is a smooth map ⇢ : I ⇥M ! M , such that for each t 2 I, the map ⇢t : M ! M : x 7! ⇢(t, x)
is a di↵eomorphism and ⇢0 = IdM .

Definition 1.3.2. A time-dependent vector field on M is a family {Xt}t2I of vector fields on
M , depending smoothly on t.

Remark 1.3.3. An isotopy {⇢t}t2I determines a unique time-dependent vector field {Xt}t2I
defined by

Xt(p) =
d

ds

�

�

�

�

s=t

⇢s(q),

where q = ⇢�1
t (p). That is, Xt satisfies

Xt � ⇢t = d

dt
⇢t. (1.2)

Conversely, given a time-dependent vector field {Xt}t2I , there exists a local isotopy ⇢ that
solves the ODE (1.2) with initial condition ⇢0 = Id. Note that in general, ⇢ is only defined on
an open subset of I ⇥M . However, if M is compact, or more generally if the Xt are compactly
supported, then the solution ⇢ is globally defined on I ⇥M .

We briefly recall some more useful facts.

Definition 1.3.4. Let f0, f1 : M ! N be smooth maps between smooth manifolds. A homo-
topy operator between f0 and f1 is a linear map Q : ⌦·(N)! ⌦·�1(M) such that

f⇤
1 � f⇤

0 = d �Q+Q � d
in the diagram

⌦k(N) ⌦k+1(N)

⌦k�1(M) ⌦k(M)

f⇤
1 � f⇤

0

d

Q Q

d
.
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Let {⇢t}t2[0,1] be an isotopy onM with corresponding time-dependent vector field {Xt}t2[0,1].
If we define

Q : ⌦k(M)! ⌦k�1(M) : ↵ 7!
Z 1

0
⇢⇤t (◆Xt

↵)dt, (1.3)

then we have the homotopy formula

⇢⇤1↵� ↵ = dQ(↵) +Q(d↵). (1.4)

Indeed, we compute

Q(d↵) + dQ(↵) =

Z 1

0
⇢⇤t (◆Xt

d↵) dt+ d

Z 1

0
⇢⇤t (◆Xt

↵) dt

=

Z 1

0
⇢⇤t (◆Xt

d↵+ d◆X
t

↵) dt

=

Z 1

0
⇢⇤t£X

t

↵

=

Z 1

0

d

dt
⇢⇤t↵

= ⇢⇤1↵� ⇢⇤0↵
= ⇢⇤1↵� ↵.

In the above manipulations, we used Cartan’s magic formula (Lemma 8.2.1 in the appendix)
and Lemma 8.2.2 in the appendix.

Definition 1.3.5. A smooth homotopy between maps f0, f1 : M ! N is a smooth map
h : [0, 1]⇥M ! N such that h(0, ·) = f0 and h(1, ·) = f1.

Proposition 1.3.6. Let f0, f1 : M ! N be homotopic maps. Then there exists a homotopy
operator Q̃ between them.

Proof. Let h : [0, 1]⇥M ! N be a smooth homotopy between f0 and f1. Consider the manifold
W = R⇥M , and let t be the coordinate on R. The vector field @

@t onW is complete and its flow �s
is given by �s(t, p) = (s+ t, p). By the homotopy formula (1.4), we find Q : ⌦k(W )! ⌦k�1(W )
such that �⇤1 � �⇤0 = d �Q +Q � d. On the other hand, denoting i : M ,! R ⇥M : p 7! (0, p),
we have

(

f0 = h(0, ·) = h � i
f1 = h(1, ·) = h � �1 � i

.

Hence,

f⇤
1 � f⇤

0 = i⇤ � �⇤1 � h⇤ � i⇤ � h⇤ = i⇤ � (�⇤1 � �⇤0) � h⇤ = i⇤ � (d �Q+Q � d) � h⇤
= d � (i⇤ �Q � h⇤) + (i⇤ �Q � h⇤) � d.

The proof ends by defining Q̃ := i⇤ �Q � h⇤.
Remark 1.3.7. It follows that for homotopic maps f0 and f1, the induced maps on cohomology

[f⇤
i ] : H

k(N)! Hk(M) : [↵] 7! [f⇤
i ↵]

for i = 0, 1 are equal. Indeed, for a closed form ↵ 2 ⌦k(N), we have

f⇤
1↵� f⇤

0↵ = d(Q̃(↵)) + Q̃(d(↵)) = d(Q̃(↵)),

hence [f⇤
0↵] = [f⇤

1↵].
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We now state the Tubular Neighborhood Theorem, which is a useful tool when working
locally near a submanifold. It reduces analysis near the submanifold to analysis in a vector
bundle, which is often preferable as one can use linear algebra in the fibers.

Let M be a manifold, X ⇢ M a submanifold and i : X ,! M the inclusion map. Via the
linear inclusions dxi : TxX ! TxM , we consider TxX as a subspace of TxM for each x 2 X.
The quotient spaces NxX := TxM/TxX are the fibers of the normal bundle

NX :=
TM |X
TX

= {(x, v) : x 2 X, v 2 NxX}.

Denote the zero section of NX by i0 : X ,! NX. A neighborhood U0 of the zero section X in
NX is called convex if the intersection U0 \NxX with each fiber is convex.

Theorem 1.3.8 (Tubular Neighborhood Theorem). In the above setup, there exists a convex
neighborhood U0 of X in NX, a neighborhood U of X in M (called tubular neighborhood), and
a di↵eomorphism � : U0 ! U such that the following diagram commutes:

NX ◆ U0 U ✓M

X

�
⇠=

i0
i .

Proof. See [Ca].

The Tubular Neighborhood Theorem is a key ingredient of the Relative Poincaré Lemma.

Proposition 1.3.9 (Relative Poincaré Lemma). Let X ⇢ M be a submanifold and denote by
i : X ,! M the inclusion. Let U be a tubular neighborhood of X. If � 2 ⌦k(U) is closed and
i⇤� = 0, then there exists ⌘ 2 ⌦k�1(U) such that

(

d⌘ = �

⌘x = 0 for all x 2 X
.

Proof. Via the di↵eomorphism � : U0 ⇢ NX ! U ⇢ M from the Tubular Neighborhood
Theorem, it is equivalent to work in U0. Let j : X ,! U0 denote the zero section and ⇡ : U0 ! X
the bundle projection. We define a retraction r of U0 onto X by

r : [0, 1]⇥ U0 ! U0 : (t, x, v) 7! (x, tv),

which is well-defined by convexity of U0. Note that r1 = IdU0 and r0 = j � ⇡ are homotopic
through r. Hence by Proposition 1.3.6, we find a homotopy operator Q̃, which gives

� � ⇡⇤(j⇤�) = dQ̃(�) + Q̃(d�).

Since � is closed and j⇤� = 0, we get that � = dQ̃(�). This makes us set ⌘ := Q̃(�). It remains
to check that ⌘ vanishes on X. From the construction of Q̃ in Proposition 1.3.6 and definition
(1.3), we see that it is enough to show that

◆
@

@t

(r⇤�)
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is zero on the slices {s}⇥X for s 2 [0, 1]. We work in a local trivialization of U0 with coordinates
(x1, . . . , xn, v1, . . . , vm), where m is the codimension of X in M and v1, . . . , vm are coordinates
in the fibers of U0. In these coordinates, r is given by

r : (t, x1, . . . , xn, v1, . . . , vm) 7! (x1, . . . , xn, tv1, . . . , tvm).

This implies that

r⇤

✓

@

@t

◆

=
n
X

i=1

@xi
@t

@

@xi
+

m
X

i=1

@(tvi)

@t

@

@vi
=

m
X

i=1

vi
@

@vi
,

which vanishes on X $ {v1 = · · · = vm = 0}. It follows that ◆
@

@t

(r⇤�) vanishes on each slice

{s}⇥X, which finishes the proof.

We now address the Moser stability theorem, which is a key result in the deformation theory
of symplectic forms. It states that one cannot get new symplectic structures by deforming a
given structure within its cohomology class.

Theorem 1.3.10 (Moser). Let M be a compact manifold and {!t}t2[0,1] a smooth family of
symplectic forms such that [!t] 2 H2(M) is independent of t. Then there exists an isotopy
⇢ : [0, 1]⇥M !M such that ⇢⇤t!t = !0 for all t 2 [0, 1].

Proof. Let ⇢ : [0, 1] ⇥ M ! M be an isotopy with associated time dependent vector field
{Xt}t2[0,1]. We have the following equivalences:

⇢⇤t!t = !0 8t 2 [0, 1], d

dt
(⇢⇤t!t) = 0

, ⇢⇤t

✓

£X
t

!t +
d

dt
!t

◆

= 0

, £X
t

!t +
d

dt
!t = 0

, d (◆X
t

!t) +
d

dt
!t = 0.

In the above manipulations, we used Lemma 8.2.3 in the appendix, injectivity of the linear
maps ⇢⇤t and Cartan’s magic formula (Lemma 8.2.1 in the appendix) along with closedness of
the !t. Hence, the theorem asks us to find {Xt}t2[0,1] such that d (◆X

t

!t) +
d
dt!t = 0.

Note that the map
⇡ : ⌦2(M)closed ! H2(M) : ! 7! [!]

is linear, which implies that

d

dt
[!t] =

d

dt
(⇡(!t)) = ⇡⇤

✓

d

dt
!t

◆

= ⇡

✓

d

dt
!t

◆

=



d

dt
!t

�

.

Hence, the assumption
⇥

d
dt!t

⇤

= d
dt [!t] = 0 yields µt 2 ⌦1(M) for t 2 [0, 1] such that dµt =

d
dt!t.

With some extra work, one shows that the one-forms µt can be chosen in a smooth way [MS,
p.95]. Hence,

d (◆X
t

!t) +
d

dt
!t = 0, d (◆X

t

!t + µt)) = 0.

Consequently, it is enough to choose Xt such that

◆X
t

!t + µt = 0. (1.5)
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Non-degeneracy of !t implies that the map

![t : X(M)! ⌦1(M) : X 7! ◆X!t

is an isomorphism. So we can set Xt := �(![t)�1(µt) for t 2 [0, 1]. By compactness of M , we
can integrate Xt to an isotopy ⇢ : [0, 1]⇥M !M , which by construction satisfies the statement
of the theorem.

Remark 1.3.11. The Moser theorem along with Remark 1.3.7 settles the deformation theory of
symplectic manifolds. Indeed, let (M,!) be a compact symplectic manifold and let ↵ 2 ⌦2(M)
with d↵ = 0. For small enough t, we have that !t := ! + t↵ is a curve of symplectic forms
with tangent ↵ at t = 0. The aforementioned results ensure that the existence of an isotopy
{⇢t} satisfying ⇢⇤t!t = ! is equivalent with ↵ being exact. This implies that H2(M) is the
“tangent space” to the moduli space of deformations of the symplectic structure. Heuristically,
deformations of symplectic forms are classified by the second de Rham cohomology group.

We will now prove a local version of the Moser Theorem 1.3.10. When working with isotopies,
the tube lemma from topology is often useful.

Lemma 1.3.12 (Tube Lemma). Let X and Y be topological spaces and assume that Y is
compact. If N is an open subset of X ⇥Y containing the slice {x0}⇥Y , then N contains some
tube W ⇥ Y about {x0}⇥ Y , where W is an open neighborhood of x0 in X.

Proof. See [Mun].

We will use the Tube Lemma in the following form:

Lemma 1.3.13. Let M be a topological space and let {Ut}t2[0,1] be a family of subsets of M ,
such that

S

t2[0,1] ({t}⇥ Ut) is open in [0, 1]⇥M . Then
T

t2[0,1] Ut is open in M .

Proof. If
T

t2[0,1] Ut = ;, there is nothing to prove. Let m 2 T

t2[0,1] Ut. We have that
S

t2[0,1] ({t}⇥ Ut) is open in [0, 1]⇥M , containing the slice [0, 1]⇥ {m}. By the Tube Lemma,
we find an open V in M around m such that [0, 1] ⇥ V is contained inside

S

t2[0,1] ({t}⇥ Ut).
This implies that V is an open neighborhood of m, contained in

T

t2[0,1] Ut, which proves that
T

t2[0,1] Ut is open.

Theorem 1.3.14 (Local Moser). Let M be a manifold and X ⇢ M a submanifold. Let !0

and !1 be symplectic forms on M such that !0|p = !1|p for all p 2 X. Then there exist
tubular neighborhoods U0, U1 of X and a di↵eomorphism f : U0 ! U1 such that f |X = IdX and
f⇤!1 = !0.

Proof. Choose a tubular neighborhood U0 of X. The 2-form !1 � !0 on U0 is closed, and
(!1 � !0)p = 0 for all p 2 X. By the relative Poincaré lemma (Proposition 1.3.9), there exists
⌘ 2 ⌦1(U0) such that !1 � !0 = d⌘ and ⌘p = 0 at all p 2 X. Now consider for 0  t  1 the
straight line homotopy

!t := !0 + t(!1 � !0) = !0 + td⌘,

consisting of closed 2-forms !t on U0. Note that !t|p = !0|p is non-degenerate for all p 2 X.
Since non-degeneracy is an open property, there exists an open neighborhood U of X on which
!t is non-degenerate for all t 2 [0, 1] (use the Tube Lemma). Shrinking U0 if necessary, we may
assume that {!t}t2[0,1] is a smooth family of symplectic forms on U0. As in Theorem 1.3.10, it

now su�ces to solve the Moser equation (1.5). Noting that d
dt!t = !1 � !0 = d⌘, we have to

solve the equation
◆v

t

!t = �⌘
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for vt. That is, using non-degeneracy of !t, we define vt := �(![t)�1(⌘). Since ⌘p = 0 for all
p 2 X, also vt vanishes on X. We now argue that the isotopy ⇢ that integrates vt is defined
on [0, 1] ⇥ V , where V is some open neighborhood of X. Define for each t 2 [0, 1] the set
Vt := {p 2 M : ⇢t(p) is defined}. Note that X ⇢ Vt for each t, since vt vanishes on X.
Also,

S

t2[0,1] ({t}⇥ Vt) (which is the domain of ⇢) is open in [0, 1] ⇥M . By Lemma 1.3.13,
V :=

T

t2[0,1] Vt is an open neighborhood of X, and ⇢ is defined on [0, 1]⇥V . Again shrinking U0

if necessary, we assume that ⇢ : [0, 1]⇥U0 !M with ⇢⇤t!t = !0 for all t 2 [0, 1]. Moreover, since
vt|X = 0, it follows that ⇢t|X = IdX . The proof ends by defining f := ⇢1 and U1 := ⇢1(U0).

We can now prove the Darboux Theorem, which states that symplectic manifolds (of equal
dimension) all look the same locally.

Theorem 1.3.15 (Darboux). Let (M2n,!) be a symplectic manifold and let x 2 M . Then
there exists a coordinate system (U, q1, . . . , qn, p1, . . . , pn) centered at x such that on U :

! =
n
X

i=1

dqi ^ dpi.

Proof. The standard form for skew-symmetric bilinear maps (Proposition 8.1.1 in appendix)
gives a basis {v1, w1, . . . , vn, wn} of the symplectic vector space TxM so that !x 2 ^2T ⇤

xM has
the canonical form. If (q01, p

0
1, . . . , q

0
n, p

0
n) are the corresponding linear coordinates on TxM , then

we have

!x =
n
X

i=1

dq0i ^ dp0i.

Fix a Riemannian metric on M and denote by � the exponential map � := expx. This is a local
di↵eomorphism between an open V ⇢ TxM around the origin 0x and an open U ⇢ M around
x. Moreover, �(0x) = expx(0x) = x and (d�)0

x

= (d expx)0
x

= IdT
x

M . On V , we consider the
symplectic forms !0 := !x and !1 := �⇤!. Note that for v, w 2 T0

x

V ⇠= TxM :

!1|0
x

(v, w) = !|�(0
x

)

�

(d�)0
x

(v), (d�)0
x

(w)
�

= !x(v, w) = !0|0
x

(v, w),

hence !0|0
x

= !1|0
x

. We now apply the local Moser theorem to the submanifold {0x} ⇢ V :
this gives open neighborhoods U0 and U1 of 0x and a di↵eomorphism f : U0 ! U1 that satisfies
f(0x) = 0x and f⇤!1 = !0. Hence, (�� f)⇤! = !0, which implies that on the open subset �(U1)
around x:

! = (f�1 � ��1)⇤!0 =
�

f�1 � ��1
�⇤
 

n
X

i=1

dq0i ^ dp0i

!

=
n
X

i=1

d
�

q0i � f�1 � ��1
� ^ d

�

p0i � f�1 � ��1
�

.

Setting new coordinates qi := q0i � f�1 � ��1 and pi := p0i � f�1 � ��1 completes the proof.

We will need a generalization of Darboux’ theorem to the case of closed two-forms with
constant rank. The proof below uses some concepts that are introduced in the last section of
Chapter 2.

Theorem 1.3.16 (Darboux). [AM, Theorem 5.1.3] Let M be a (2n+ k)-dimensional manifold
and ! a closed 2-form of constant rank 2n. For each x0 2 M , there is a coordinate chart
(U, x1, . . . , xn, y1, . . . , yn, w1, . . . , wk) about x0 such that

!|U =
n
X

i=1

dxi ^ dyi.
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Proof. Let us first show that Ker(!) is a completely integrable distribution. Consider the bundle
map ![ : TM ! T ⇤M : v 7! ◆v!. By assumption, this map has constant rank 2n, which implies
that its kernel Ker(!) is a smooth rank k subbundle of TM ([Lee, Theorem 10.34]). That is,
Ker(!) is a smooth regular distribution. To show it is completely integrable, it is enough to
check involutivity by Frobenius’ theorem. If X,Y 2 �

�

Ker(!)
�

and Z 2 �(TM), then

0 = d!(X,Y, Z) = X
�

!(Y, Z)
�� Y

�

!(X,Z)
�

+ Z
�

!(X,Y )
�

� !([X,Y ], Z) + !([X,Z], Y )� !([Y, Z], X)

= �!([X,Y ], Z).

Hence [X,Y ] 2 �
�

Ker(!)
�

, and the distribution Ker(!) is completely integrable.
Now let x0 2 M . Since Ker(!) is a completely integrable k-dimensional distribution, we can
find coordinates (U, p1, . . . , pn, q1, . . . , qn, w1, . . . , wk) centered at x0 so that { @

@w1
, . . . , @

@w
k

} is a
local basis for Ker(!) on U . Denote by N the slice given by w1 = · · · = wk = 0, which is a
2n-dimensional submanifold with coordinates (U \ N, p1, . . . , pn, q1, . . . , qn) centered at x0. If
i : N !M denotes the inclusion, then i⇤! is a closed 2-form on N of maximal rank 2n: it is a
symplectic form on N . By the Darboux Theorem 1.3.15, shrinking U if necessary, we find new
coordinates (U \N, x1, . . . , xn, y1, . . . , yn) on N near x0 so that

i⇤! =
n
X

i=1

dxi ^ dyi.

Extending the xi and yj locally near x0, we get that (x1, . . . , xn, y1, . . . , yn, w1, . . . , wk) is a
coordinate system for M around x0, since the Jacobian determinant of the map

(p1, . . . , pn, q1, . . . , qn, w1, . . . , wk) 7! (x1, . . . , xn, y1, . . . , yn, w1, . . . , wk)

is
�

�

�

�

�

h

@(x
i

,y
j

)
@(p

i

,q
j

)

i

?

0 I

�

�

�

�

�

=
�

�

�

h

@(x
i

,y
j

)
@(p

i

,q
j

)

i

�

�

�

,

which is non-vanishing at x0. In these coordinates, the expression for ! does not involve
dw1, . . . , dwk, whence

! =
n
X

i=1

dxi ^ dyi.

Remark 1.3.17. A manifold M endowed with a closed two-form ! of constant rank is called a
presymplectic manifold. Theorem 1.3.15 is the Darboux theorem for presymplectic manifolds.
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Chapter 2

Preliminary Poisson Geometry

An extension of symplectic geometry is provided by Poisson geometry. Poisson geometry indeed
started o↵ as an outgrowth of symplectic geometry, though nowadays it is an extensive theory
that bears connection with many other branches in mathematics. Poisson manifolds arise nat-
urally as phase spaces of classical particles, but they are also entangled with non-commutative
geometry and integrable systems, to name a few.

This thesis addresses log-symplectic manifolds, which form a convenient class of Poisson
manifolds that can be considered as an intermediate level between the symplectic world and the
generic Poisson world.

In this preliminary chapter, the main features of Poisson geometry are presented, with
emphasis on the aspects that will be of particular interest for us. Since the author was not
familiar with Poisson geometry prior to writing this thesis, he chose to make this chapter into
a rather detailed introduction, as a personal exercise. Readers already familiar with Poisson
geometry can of course ignore this chapter, or at least the details of it. What follows is mainly
a compilation of results from [FM], [DT],[CW] and [LPV].

2.1 Almost Poisson structures (1)

Definition 2.1.1. An almost Poisson structure on a smooth manifold M is a bilinear bracket
{·, ·} : C1(M)⇥ C1(M)! C1(M) that satisfies

(i) Skew-symmetry: {f, g} = �{g, f};
(ii) Leibniz identity: {f, gh} = {f, g}h+ g{f, h}.
The Leibniz identity says that {f, ·} is a derivation of C1(M). By skew-symmetry, the

bracket {·, ·} is a derivation in both arguments.

Example 2.1.2. Let (g, [·, ·]) be a finite dimensional Lie algebra. Its dual g⇤ inherits a canonical
almost Poisson bracket. Given f 2 C1(g⇤) and ⇠ 2 g⇤, the di↵erential

d⇠f : T⇠g
⇤ ⇠= g⇤ ! Tf(⇠)R ⇠= R

can be viewed as a map g⇤ ! R. So it is an element of g⇤⇤. Since g is finite dimensional, we
have g⇤⇤ ⇠= g, so we can consider d⇠f 2 g. This allows us to define an almost Poisson bracket
{·, ·} on C1(g⇤) as follows: for f, h 2 C1(g⇤) we define {f, h} 2 C1(g⇤) by

{f, h}(⇠) = h[d⇠f, d⇠h], ⇠i for ⇠ 2 g⇤,

where h·, ·i denotes the pairing between g and its dual g⇤. One checks that this bracket has the
desired properties.
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Almost Poisson structures are local. In order to show this, we need a lemma.

Lemma 2.1.3. Let {·, ·} be an almost Poisson structure on M . Then for all f, g 2 C1(M):

supp{f, g} ⇢ supp(f) \ supp(g).

Proof. We show that supp{f, g} ⇢ supp(f). If supp(f) = M , then there is nothing to prove.
So assume that supp(f) 6= M . Choose x0 /2 supp(f). The open sets V := M \ {x0} and
U := M \ supp(f) cover M . Choose a partition of unity ⇢U , ⇢V subordinate to the cover {U, V }.
Then we have:

{f, g}(x0) = {⇢Uf + ⇢V f, g}(x0) (since ⇢U + ⇢V ⌘ 1)

= {⇢V f, g}(x0) (⇢Uf ⌘ 0 since supp(⇢U ) ⇢M \ supp(f))
= ⇢V (x0){f, g}(x0) + f(x0){⇢V , g}(x0) (Leibniz identity)

= 0. (f(x0) = ⇢V (x0) = 0)

This shows that M \ supp(f) ⇢ {x 2M : {f, g}(x) = 0}. Taking complements in this inclusion,
we get {x 2 M : {f, g}(x) 6= 0} ⇢ supp(f). Taking closures then gives supp{f, g} ⇢ supp(f).

Corollary 2.1.4. Given an almost Poisson structure {·, ·} on M , we can restrict the bracket to
an open subset U ⇢M , obtaining an almost Poisson bracket {·, ·}U such that for f, g 2 C1(M),
we have

{f, g}|U = {f |U , g|U}U .

Proof. We show that the formula {f, g}|U = {f |U , g|U}U yields a well-defined bracket on U .
Take ↵,� 2 C1(U) such that ↵ = f |U = f 0|U and � = g|U = g0|U for f, f 0, g, g0 2 C1(M).
Note that (g� g0)|U ⌘ 0, hence {x 2M : (g� g0)(x) 6= 0} ⇢M \U . Then supp(g� g0) ⇢M \U
by taking closures. Now Lemma 2.1.3 implies that

supp{f, g0 � g} ⇢ supp(f) \ supp(g � g0) ⇢M \ U.

Hence {f, g0� g}|U ⌘ 0, which implies that {f, g0}|U = {f, g}|U . Similarly, {f 0, g}|U = {f, g}|U .

Remark 2.1.5. Corollary 2.1.4 shows in particular that the value of {f, g} at some point x 2M
only depends on the restriction of f and g to a neighborhood of x. Henceforth, we will no longer
distinguish between {·, ·} and {·, ·}U .

The description of almost Poisson structures in terms of a bracket on the algebra of smooth
functions is not always the most e�cient one. There is an alternative description in terms of
so-called bivector fields. A brief excursion to multivector fields is needed.

2.2 Multivector fields

Let M be a smooth n-dimensional manifold and k a positive integer. Recall that the smooth
di↵erential k-forms ⌦k(M) are sections of the vector bundle ^kT ⇤M . They can be identified
with the C1(M)-multilinear, alternating maps

! : X(M)⇥ · · ·⇥ X(M)! C1(M).
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The k-multivector fields, denoted by Xk(M), are sections of the dual bundle (^kT ⇤M)⇤ =
^k(T ⇤M)⇤ = ^kTM . They can be identified with the C1(M)-multilinear, alternating maps

⌫ : ⌦1(M)⇥ · · ·⇥ ⌦1(M)! C1(M).

Let (x1, . . . , xn) be a system of local coordinates on M . Then ! 2 ⌦k(M) and ⌫ 2 Xk(M) have
local expressions

! =
X

1i1<···<i
k

n

!i1,...,i
k

dxi1 ^ · · · ^ dxi
k

and ⌫ =
X

1i1<···<i
k

n

⌫i1,...,i
k

@

@xi1
^ · · · ^ @

@xi
k

.

The pairing h!, ⌫i of ! and ⌫ is the function defined by

h!, ⌫i =
X

1i1<···<i
k

n

!i1,...,i
k

⌫i1,...,i
k

.

One checks that this definition does not depend on the choice of coordinates.

The space of all multivector fields X•(M) :=
Ln

k=0X
k(M) is endowed with the usual oper-

ations, listed below.

Wedge product

For p 2 M , the exterior algebra ^TpM of the vector space TpM has a wedge product ^. It is
defined by

^ : ^k TpM ⇥ ^lTpM ! ^k+lTpM :

(v ^ w)(↵1, . . . ,↵k+l) =
1

k!l!

X

�2S
k+l

sgn(�)v(↵�(1), . . . ,↵�(k))w(↵�(k+1), . . . ,↵�(k+1)),

where ↵1, . . . ,↵k+l 2 T ⇤
pM . It induces a wedge product of multivector fields by

^ : Xk(M)⇥ Xs(M)! Xk+s(M) : (⌫ ^ ⇣)p = ⌫p ^ ⇣p, where ⌫p, ⇣p 2 ^TpM.

With the convention that X0(M) = C1(M) and f ^ ⌫ = f⌫ for f 2 C1(M), ⌫ 2 Xk(M), the
wedge product turns X•(M) into a Grassmann algebra. That is,

(i) (f⌫1 + g⌫2) ^ ⇣ = f⌫1 ^ ⇣ + g⌫2 ^ ⇣ for f, g 2 C1(M);

(ii) ⌫ ^ ⇣ = (�1)kl⇣ ^ ⌫ for ⌫ 2 Xk(M) and ⇣ 2 Xl(M);

(iii) (⌫1 ^ ⌫2) ^ ⌫3 = ⌫1 ^ (⌫2 ^ ⌫3).
We can evaluate wedge products by

(X1 ^ · · · ^Xk)(↵1, . . . ,↵k) = det[↵i(Xj)]i,j

for X1, . . . , Xk 2 X(M) and ↵1, . . . ,↵k 2 ⌦1(M).

Interior product

Given a k-vectorfield ⌫ 2 Xk(M) and a 1-form ↵ 2 ⌦1(M), the interior product of ⌫ by ↵ is
◆↵⌫ 2 Xk�1(M), defined by

◆↵⌫(↵1, . . . ,↵k�1) = ⌫(↵,↵1, . . . ,↵k�1).

It is a degree �1 derivation of ^, satisfying:
(i) ◆↵(f⌫1 + g⌫2) = f ◆↵⌫1 + g◆↵⌫2;

(ii) ◆↵(⌫ ^ ⇠) = (◆↵⌫) ^ ⇠ + (�1)k⌫ ^ (◆↵⇠) for ⌫ 2 Xk(M);

(iii) ◆(f↵+g�)⌫ = f ◆↵⌫ + g◆�⌫.
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Pushforward

If � : M ! N is a smooth map, we have an induced pullback map �⇤ : ⌦•(N) ! ⌦•(M) on
di↵erential forms. The pushforward is the dual operation on multivector fields. One has to be
more careful though; as opposed to the pullback, the pushforward is not always defined.

For each p 2M we have a linear map dp� : TpM ! T�(p)N and an induced linear map

dp� : ^kTpM ! ^kT�(p)N : v1 ^ · · · ^ vk 7! (dp�)(v1) ^ · · · ^ (dp�)(vk),

where dp� is the identity map on R = ^0TpM = ^0T�(p)N . Two k-vectorfields ⌫ 2 Xk(M) and

⇠ 2 Xk(N) are said to be �-related if ⇠�(p) = (dp�)(⌫p) for all p 2 M . In general, this relation

does not define a map Xk(M)! Xk(N). We can have several multivector fields on N that are
�-related to a fixed multivector field on M . For instance, consider

� : R2 ! R2 : (x, y) 7! (x, 0).

Saying that Y 2 X(R2) is �-related to X 2 X(R2) only determines Y on {(x, 0) : x 2 R}. It
is also possible that there exist no multivector fields that are �-related to a fixed multivec-
tor field. For instance, take X 2 X(R2) in the previous example such that (d(x,1)�)(X(x,1))
and (d(x,0)�)(X(x,0)) are di↵erent. If � is a di↵eomorphism however, we get a well-defined
pushforward map

�⇤ : X
k(M)! Xk(N) : ⌫ 7! �⇤⌫,

where (�⇤⌫)�(p) = (dp�)(⌫p) for all p 2M . The pushforward satisfies

(i) �⇤(a⌫1 + b⌫2) = a�⇤(⌫1) + b�⇤(⌫2) for a, b 2 R;
(ii) �⇤(⌫ ^ ⇣) = �⇤(⌫) ^ �⇤(⇣).

Remark 2.2.1. Multivector fields ⌫ 2 Xk(M) and ⇠ 2 Xk(N) being �-related means that

⇠�(p)(↵1, . . . ,↵k) = ⌫p(�
⇤↵1, . . . ,�

⇤↵k) for all ↵1, . . . ,↵k 2 T ⇤
�(p)N.

Indeed,

(dp�)(X1|p ^ · · · ^Xk|p)(↵1, . . . ,↵k) = (dp�)(X1|p) ^ · · · ^ (dp�)(Xk|p)(↵1, . . . ,↵k)

=

�

�

�

�

�

�

�

↵1 (dp�(X1|p)) . . . ↵1 (dp�(Xk|p))
...

...
↵k (dp�(X1|p)) . . . ↵k (dp�(Xk|p))

�

�

�

�

�

�

�

=

�

�

�

�

�

�

�

(�⇤↵1)(X1|p) . . . (�⇤↵1)(Xk|p)
...

...
(�⇤↵k)(X1|p) . . . (�⇤↵k)(Xk|p)

�

�

�

�

�

�

�

= (X1|p ^ · · · ^Xk|p)
�

�⇤↵1, . . . ,�
⇤↵k

�

.

Lie derivative

The Lie derivative of a k-vectorfield ⌫ 2 Xk(M) along a vectorfieldX 2 X(M) is the k-vectorfield
£X⌫ 2 Xk(M) defined by

£X⌫ =
d

dt
(��t)⇤⌫

�

�

�

�

t=0

,

where � is the flow of X. Note that the pushforward in this formula is well-defined, since the
flow maps ��t are di↵eomorphisms.
The Lie derivative is a degree 0 derivation of ^. If X 2 X(M) and ⌫1, ⌫2 2 X•(M) then
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(i) £X(a⌫1 + b⌫2) = a£X⌫1 + b£X⌫2 for a, b 2 R;
(ii) £X(⌫1 ^ ⌫2) = (£X⌫1) ^ ⌫2 + ⌫1 ^ (£X⌫2);

(iii) £X(f) = X(f) for f 2 C1(M) = X0(M);

(iv) £XY = [X,Y ] for Y 2 X(M).

Schouten bracket

The Schouten bracket is an operation on multivector fields that extends the Lie bracket of vector
fields. The following theorem ensures its existence and uniqueness.

Theorem 2.2.2 (Schouten bracket). There is a unique bilinear map [·, ·] that turns X•�1(M)
into a Z-graded super Lie algebra, with the following properties:

(i) For fixed ⇠ 2 Xk(M), the bracket [⇠, ·] is a graded derivation of degree k � 1 with respect
to the wedge product on X•(M).

(ii) For X 2 X(M), the bracket [X, ·] is the Lie derivative.

(iii) For ⇠ 2 Xk(M) and ⇣ 2 Xl(M), the value of [⇠, ⇣] at a point p depends only on the
restriction of ⇠ and ⇣ to a neighborhood of p.

Proof. See for instance Theorem 1.1 in [Vai].

Remark 2.2.3. Super Lie algebra means that skew-symmetry and the Jacobi identity hold
with signs. That is:

• [⌫, ⇣] = �(�1)(k�1)(l�1)[⇣, ⌫] for ⌫ 2 Xk(M) and ⇣ 2 Xl(M);

• (�1)(k�1)(m�1)[[⌫, ⇣], ⌧ ] + (�1)(l�1)(k�1)[[⇣, ⌧ ], ⌫] + (�1)(m�1)(l�1)[[⌧, ⌫], ⇣] = 0
for ⌫ 2 Xk(M), ⇣ 2 Xl(M) and ⌧ 2 Xm(M).

Property (i) in Theorem 2.2.2 means that

[⇠, ⇣ ^ ⌧ ] = [⇠, ⇣] ^ ⌧ + (�1)(k�1)l⇣ ^ [⇠, ⌧ ],

where ⇠ 2 Xk(M), ⇣ 2 Xl(M) and ⌧ 2 Xm(M).
Property (ii) in Theorem 2.2.2 says that the Schouten bracket extends the Lie bracket, as was
desired. Indeed, for X,Y 2 X(M) we get [X,Y ]Schouten = £XY = [X,Y ]Lie.

Remark 2.2.4. Note that the grading for the graded Lie algebra structure on multivector fields
di↵ers from the grading for the graded algebra structure. Indeed, the Lie algebra grading is the
algebra grading shifted by �1. Consequently, we have

[·, ·] : Xk(M)⇥ Xl(M)! Xk+l�1(M).

Indeed, ⌫ 2 Xk(M) has degree k � 1 and ⇣ 2 Xl(M) has degree l � 1. Hence [⌫, ⇣] has degree
k � 1 + l � 1, and therefore it is an element of Xk+l�1(M). In contrast with this, we have

^ : Xk(M)⇥ Xl(M)! Xk+l(M).

The next result follows from the defining properties of the Schouten bracket. Its proof can
be found in the appendix.

Lemma 2.2.5. If f 2 C1(M) and ⌫ 2 Xk(M), then [f, ⌫] = �◆df⌫.
We also include an explicit definition of the Schouten bracket.
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Definition 2.2.6. Let ⌫ 2 Xk(M) and ⇣ 2 Xl(M) be multivector fields. Their Schouten bracket
is the multivector field [⌫, ⇣] 2 Xk+l�1(M) defined by

[⌫, ⇣] = ⌫ � ⇣ � (�1)(k�1)(l�1)⇣ � ⌫,
where we set

⇣ � ⌫(df1, . . . , dfk+l�1) :=
X

�

sgn(�)⇣(⌫(f�(1), . . . , f�(k)), f�(k+1), . . . , f�(k+l�1)).

The sum is over all (k, l�1)-shu✏es, that is the � 2 Sk+l�1 satisfying �(1) < �(2) < · · · < �(k)
and �(k + 1) < �(k + 2) < · · · < �(k + l � 1). And we define ⌫(f1, . . . , fk) := ⌫(df1, . . . , dfk).

Remark 2.2.7. It su�ces to define [⌫, ⇣] on exact 1-forms since they locally span ⌦1(M) and
multivector fields are C1(M)-multilinear. The explicit definition is of little use in practice; for
computations we rather use the defining properties in Theorem 2.2.2.

2.3 Almost Poisson structures (2)

We defined an almost Poisson structure on M in terms of a bilinear bracket {·, ·} on C1(M).
There is a second description, in terms of a bivector field.

Proposition 2.3.1. For a smooth manifold M , there is a 1 : 1 correspondence between almost
Poisson brackets {·, ·} and bivector fields ⇧ 2 X2(M), given by

{f, g} = ⇧(df, dg) = h⇧, df ^ dgi.
Proof. Let {·, ·} be an almost Poisson bracket on M . We first show that {f, g}(x0) only depends
on dx0f and dx0g. To do this, it su�ces to show that dx0f = 0 implies {f, g}(x0) = 0.
By Corollary 8.4.2 in the appendix, we can take a coordinate neighborhood U of x0 on which1

f(x) = f(x0) +
n
X

i=1

(xi � xi0)
@f

@xi
(x0) +

n
X

i,j=1

(xi � xi0)(x
j � xj0)gij(x)

= f(x0) +
n
X

i=1

(xi � xi0)
@f

@xi
(x0) +

n
X

i=1

(xi � xi0)
n
X

j=1

(xj � xj0)gij(x),

for functions gij 2 C1(U). Since by assumption dx0f = 0, it follows that we can locally write

f(x) = f(x0) +
n
X

i=1

(xi � xi0)
n
X

j=1

(xj � xj0)gij(x) = f(x0) +
n
X

i=1

↵i(x)�i(x),

where we defined ↵i(x) := xi�xi0 and �i(x) :=
Pn

j=1(x
j �xj0)gij(x). Note that ↵i(x) and �i(x)

vanish at x0. Using the Leibniz identity, we get

{f, g}(x0) =
n

f(x0) +
n
X

i=1

↵i(x)�i(x), g
o

(x0)

= {f(x0), g}(x0) +
n
X

i=1

↵i(x0){�i, g}(x0) +
n
X

i=1

�i(x0){↵i, g}(x0)

1We denote the coordinates x = (x1, . . . , xn) by upper indices to avoid double lower indices.
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= {f(x0), g}(x0).

However, the Leibniz identity also implies that

{1, g} = {1 · 1, g} = {1, g} · 1 + 1 · {1, g} = 2 · {1, g},

hence {1, g} = 0. By linearity, also f(x0){1, g} = {f(x0), g} = 0, from which it follows that
{f, g}(x0) = 0. Thus we can write

{f, g}(x) = ⇧x(dxf, dxg), (2.1)

for a smooth field of skew-symmetric bilinear maps ⇧x : T ⇤
xM ⇥ T ⇤

xM ! R. Equation (2.1)
defines ⇧ uniquely as a C1(M)-bilinear, skew-symmetric map ⇧ : ⌦1(M)⇥⌦1(M)! C1(M).
Conversely, given a bivector field ⇧ 2 X2(M), we define a bracket {·, ·} on C1(M) in the
prescribed way:

{f, g} := ⇧(df, dg).

It is straightforward to check that this bracket satisfies the necessary properties of Definition
2.1.1.

Almost Poisson structures are however not exactly the objects of interest for us. Poisson
structures are.

2.4 Poisson structures

Definition 2.4.1. An almost Poisson structure {·, ·} on a manifold M is called a Poisson
structure if it satisfies the Jacobi identity, that is

{{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} = 0 for all f, g, h 2 C1(M).

A Poisson manifold (M, {·, ·}) is a manifold M equipped with a Poisson structure {·, ·}. The
corresponding bivector field ⇧ is called a Poisson tensor.

By Proposition 2.3.1, we know that with a bivector ⇧ comes an almost Poisson bracket {·, ·}.
In general, this bracket does not satisfy the Jacobi identity (i.e. it is not Poisson). We will now
see which property characterizes bivectors ⇧ that do correspond to Poisson brackets.

Definition 2.4.2. Given an almost Poisson structure {·, ·} on M , we define the jacobiator J
on C1(M) by

J(f, g, h) = {{f, g}, h}+ {{g, h}, f}+ {{h, f}, g}.
One can check that the jacobiator is alternating and a derivation in each of its arguments.

By an argument identical to the proof of Proposition 2.3.1, it follows that the jacobiator J
corresponds to a trivector field J 2 X3(M) such that J(df, dg, dh) = J(f, g, h).

Proposition 2.4.3. Let (M, {·, ·}) be almost Poisson. Then [⇧,⇧] = 2J.

Proof. By definition of the Schouten bracket:

1

2
[⇧,⇧](df1, df2, df3) =

�

⇧ �⇧�(df1, df2, df3)
=
X

�

sgn(�)⇧
�

⇧
�

f�(1)f�(2)), f�(3)
�

,
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where the sum is over all � 2 S3 with �(1) < �(2). That is, we sum over the permutations
(1)(2)(3), (1)(23) and (123). Their signs are +1, �1, +1 respectively. Hence

1

2
[⇧,⇧](df1, df2, df3) = ⇧

�

⇧
�

f1, f2
�

, f3
�

+⇧
�

⇧
�

f2, f3
�

, f1
��⇧

�

⇧
�

f1, f3
�

, f2
�

= ⇧
�

⇧
�

df1, df2
�

, f3
�

+⇧
�

⇧
�

df2, df3
�

, f1
��⇧

�

⇧
�

df1, df3
�

, f2
�

= ⇧
�{f1, f2}, f3

�

+⇧
�{f2, f3}, f1

��⇧
�{f1, f3}, f2

�

= ⇧
�

d{f1, f2}, df3
�

+⇧
�

d{f2, f3}, df1
��⇧

�

d{f1, f3}, df2
�

= {{f1, f2}, f3}+ {{f2, f3}, f1}+ {{f3, f1}, f2} (2.2)

= J(f1, f2, f3)

= J(df1, df2, df3).

Hence [⇧,⇧] = 2J.

It follows that the Jacobi identity for the bracket {·, ·} is equivalent with the equation
[⇧,⇧] = 0 for the corresponding bivector field ⇧.

Corollary 2.4.4. Let (M, {·, ·}) be a Poisson manifold. Then the associated bivector field
⇧ 2 X2(M) satisfies [⇧,⇧] = 0. Conversely, every bivector field ⇧ 2 X2(M) satisfying this
relation defines a Poisson bracket by {f, g} := ⇧(df, dg).

Remark 2.4.5. By Remark 2.2.3, the Schouten bracket of bivector fields is symmetric. Hence,
the condition [⇧,⇧] = 0 is not vacuous.

Example 2.4.6. We reconsider Example 2.1.2. For a finite dimensional Lie algebra (g, [·, ·]),
we established that

{f, h}(⇠) = h[d⇠f, d⇠h], ⇠i
defines an almost Poisson bracket {·, ·} on g⇤. In fact, one can check that this bracket satisfies
the Jacobi identity. Therefore it is a Poisson structure on g⇤, called the Lie-Poisson bracket.

Example 2.4.7. Let M be a 2-dimensional manifold. Then every bivector ⇧ is a Poisson
tensor. Indeed, [⇧,⇧] 2 X3(M) hence necessarily [⇧,⇧] = 0.

Example 2.4.8. Quite trivially, any manifoldM is Poisson when endowed with the zero bracket
{·, ·} ⌘ 0.

We finish this section with a few words about coordinate representations of Poisson struc-
tures.

Definition 2.4.9. Let (U, x1, . . . , xn) be local coordinates on a Poisson manifold (M, {·, ·})
with Poisson bivector ⇧. Structure functions ⇧i,j 2 C1(U) are defined by

⇧i,j(x) = {xi, xj}(x) = ⇧x(dxxi, dxxj).

Note that ⇧i,j = �⇧j,i by skew-symmetry.

In the local basis { @
@x

i

^ @
@x

j

: 1  i < j  n} of X2(M), we write ⇧ =
P

i<j hi,j
@
@x

i

^ @
@x

j

for

locally defined functions hi,j . Evaluating both sides in (dxi, dxj) gives hi,j = ⇧(dxi, dxj) = ⇧ij .
Hence

⇧ =
X

i<j

⇧i,j
@

@xi
^ @

@xj
=

1

2

X

i,j

⇧i,j
@

@xi
^ @

@xj
.
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Equivalently, we have a local expression for the bracket:

{f, g} = ⇧(df, dg) = ⇧

0

@

X

i

@f

@xi
dxi,

X

j

@f

@xj
dxj

1

A =
X

i,j

⇧(dxi, dxj)
@f

@xi

@f

@xj
=
X

i,j

⇧i,j
@f

@xi

@f

@xj
.

Example 2.4.10. One can derive a coordinate expression for the Lie-Poisson bracket on g⇤ as
follows. Let {v1, . . . , vn} be a basis of g and let µ1, . . . , µn be the coordinate functions on g⇤

corresponding to the dual basis. Introduce structure constants cijk satisfying

[vi, vj ] =
n
X

k=1

cijkvk.

Then one can check that

{f, g} =
n
X

i,j,k=1

cijkµk
@f

@µi

@g

@µj
. (2.3)

2.5 Symplectic versus Poisson structures

Symplectic manifolds are the nicest examples of Poisson manifolds. The aim of this section is
showing that symplectic structures correspond to non-degenerate Poisson structures.

Definition 2.5.1. Let ⇧ 2 X2(M) be a bivector field. It determines a sharp map

⇧] : ⌦1(M)! X(M) : ↵ 7! ◆↵⇧.

That is, h�,⇧](↵)i = h↵ ^ �,⇧i for all ↵,� 2 ⌦1(M). The map ⇧] is C1(M)-linear, whence
induced by a morphism of vector bundles ⇧] : T ⇤M ! TM .

Definition 2.5.2. The rank of a bivector ⇧ 2 X2(M) at a point x 2M is the rank of the linear

map ⇧]x : T ⇤
xM ! TxM .

Remark 2.5.3. Let (x1, . . . , xn) be local coordinates around x 2M . With respect to the bases

{dxx1, . . . , dxxn} and { @
@x1

|x, . . . , @
@x

n

|x} of T ⇤
xM resp. TxM , the matrix of ⇧]x is equal to the

transpose of the matrix of the bilinear map ⇧x : T ⇤
xM ⇥ T ⇤

xM ! R. That is,
⇥

⇧]x
⇤

=
⇥

⇧x(dxxi, dxxj)
⇤T
i,j

=
⇥

⇧i,j(x)
⇤T
i,j
.

This is true since

⇧](dxk) = ◆dx
k

0

@

1

2

X

i,j

⇧i,j
@

@xi
^ @

@xj

1

A =
1

2

X

i,j

⇧i,j

✓

�ik
@

@xj
� �jk @

@xi

◆

=
1

2

X

j

⇧k,j
@

@xj
� 1

2

X

i

⇧i,k
@

@xi
=
X

j

⇧k,j
@

@xj
.

Remark 2.5.4. By skew-symmetry, the rank of ⇧ at any point x 2 M is an even number.
This is a direct consequence of the Standard Form Theorem for skew-symmetric bilinear maps
(Proposition 8.1.1 in the appendix).

Definition 2.5.5. A bivector field ⇧ 2 X2(M) is called regular if its rank is the same at all
points x 2M .
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Definition 2.5.6. A bivector field ⇧ 2 X2(M) is called non-degenerate at x 2 M if the map

⇧]x : T ⇤
xM ! TxM is an isomorphism. A bivector field is non-degenerate if it is non-degenerate

at all x 2M . In this case, the map ⇧] : T ⇤M ! TM is a vector bundle isomorphism.

Remark 2.5.7. Assume that dim(M) = 2n. Non-degeneracy of ⇧ 2 X2(M) is easily checked
as follows: ⇧x is non-degenerate if and only if ^n⇧x 6= 0. For a proof of this fact, see Lemma
8.1.2 in the appendix.

The key result in light of the aim of this section, is the following.

Proposition 2.5.8. There is a 1 : 1 correspondence between non-degenerate bivector fields
⇧ 2 X2(M) and non-degenerate 2-forms ! 2 ⌦2(M), given by

![ = �(⇧])�1  ! ⇧] = �(![)�1

Under this correspondence, we have

⇥

⇧,⇧
⇤

(↵,�, �) = 2d!
�

⇧](↵),⇧](�),⇧](�)
�

for ↵,�, � 2 ⌦1(M). (2.4)

Proof. The first statement is clear. It is enough to check that equation (2.4) holds on exact
1-forms since these locally span ⌦1(M) and both sides of (2.4) are C1(M)-trilinear.
By Equation (2.2) in Proposition 2.4.3, we have

⇥

⇧,⇧
⇤�

df1, df2, df3
�

= 2
�{{f1, f2}, f3}+ {{f2, f3}, f1}+ {{f3, f1}, f2}

�

.

On the other hand, the invariant formula for the exterior derivative gives

d!
�

⇧](df1),⇧
](df2),⇧

](df3)
�

= ⇧](df1)
⇣

!
�

⇧](df2),⇧
](df3)

�

⌘

�⇧](df2)
⇣

!
�

⇧](df1),⇧
](df3)

�

⌘

+⇧](df3)
⇣

!
�

⇧](df1),⇧
](df2)

�

⌘

� !
⇣

⇥

⇧](df1),⇧
](df2)

⇤

,⇧](df3)
⌘

+ !
⇣

⇥

⇧](df1),⇧
](df3)

⇤

,⇧](df2)
⌘

� !
⇣

⇥

⇧](df2),⇧
](df3)

⇤

,⇧](df1)
⌘

.

Here,

⇧](df1)
⇣

!
�

⇧](df2),⇧
](df3)

�

⌘

= ⇧](df1)
⇣

![
�

⇧](df2)
��

⇧](df3)
�

⌘

= �⇧](df1)
�

df2
�

⇧](df3)
��

(since ![ = �(⇧])�1)

= �⇧](df1)
�

⇧](df3)(f2)
�

= �⇧](df1)
�{f3, f2}

�

(since ⇧](df3) = ⇧(df3, ·) = {f3, ·})
= �{f1, {f3, f2}}.

Similarly,

⇧](df2)
⇣

!
�

⇧](df1),⇧
](df3)

�

⌘

= �{f2, {f3, f1}}
and

⇧](df3)
⇣

!
�

⇧](df1),⇧
](df2)

�

⌘

= �{f3, {f2, f1}}.
Next,

!
⇣

⇥

⇧](df1),⇧
](df2)

⇤

,⇧](df3)
⌘

= �![�⇧](df3)
�

⇣

⇥

⇧](df1),⇧
](df2)

⇤

⌘

= df3
⇣

⇥

⇧](df1),⇧
](df2)

⇤

⌘

(since ![ = �(⇧])�1)
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=
⇥

⇧](df1),⇧
](df2)

⇤

(f3)

= ⇧](df1)
⇣

⇧](df2)(f3)
⌘

�⇧](df2)
⇣

⇧](df1)(f3)
⌘

= {f1, {f2, f3}}� {f2, {f1, f3}}.

Similarly,

!
⇣

⇥

⇧](df1),⇧
](df3)

⇤

,⇧](df2)
⌘

= {f1, {f3, f2}}� {f3, {f1, f2}}

and

!
⇣

⇥

⇧](df2),⇧
](df3)

⇤

,⇧](df1)
⌘

= {f2, {f3, f1}}� {f3, {f2, f1}}.

It follows that

d!
�

⇧](df1),⇧
](df2),⇧

](df3)
�

= �{f1, {f3, f2}}+ {f2, {f3, f1}}� {f3, {f2, f1}}
� {f1, {f2, f3}}+ {f2, {f1, f3}}+ {f1, {f3, f2}}
� {f3, {f1, f2}}� {f2, {f3, f1}}+ {f3, {f2, f1}}
= {{f1, f2}, f3}+ {{f2, f3}, f1}+ {{f3, f1}, f2}.

Thus,
⇥

⇧,⇧
⇤

(df1, df2, df3) = 2d!
�

⇧](df1),⇧
](df2),⇧

](df3)
�

.

We conclude:

Corollary 2.5.9. On a manifold M , there is a 1 : 1 correspondence between non-degenerate
Poisson structures and symplectic stuctures.

Proof. If ⇧ 2 X2(M) is non-degenerate, then ⇧] : ⌦1(M) ! X(M) is an isomorphism (of
C1(M)-modules), in which case d! = 0 if and only if d!

�

⇧](↵),⇧](�),⇧](�)
�

= 0 for all
↵,�, � 2 ⌦1(M). It follows that the correspondence of Proposition 2.5.8 matches non-degenerate
bivectors ⇧ satisfying [⇧,⇧] = 0 with non-degenerate 2-forms ! satisfying d! = 0.

In local coordinates, we make the transition between the Poisson bivector ⇧ and its asso-
ciated symplectic form ! as follows. Choose local frames {dx1, . . . , dxn} and { @

@x1
, . . . , @

@x
n

} of

T ⇤M resp. TM . Write ⇧ =
P

i<j ⇧i,j
@
@x

i

^ @
@x

j

. By non-degeneracy, the matrix [⇧] = [⇧i,j ]i,j
is invertible, and

[!] = [![]T =
⇣

�[⇧]]�1
⌘T

= �
⇣

[⇧]]T
⌘�1

= �[⇧]�1

It follows that ! =
P

i<j !i,jdxi ^ dxj , where [!i,j ]i,j = �[⇧i,j ]�1.

Example 2.5.10. The canonical Poisson structure on R2n with coordinates (q1, p1, . . . , qn, pn)
is ⇧ =

Pn
i=1

@
@q

i

^ @
@p

i

. It is non-degenerate, and corresponds to the canonical symplectic form

! = �⇧�1 =
Pn

i=1 dqi ^ dpi.

2.6 Poisson maps

Having defined the objects of the Poisson category (namely, Poisson manifolds), we now address
the morphisms of this category.
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Definition 2.6.1. A smooth map � : (M, {·, ·}M )! (N, {·, ·}N ) between Poisson manifolds is
called a Poisson map when

�⇤ ({f, g}N ) = {�⇤(f),�⇤(g)}M for all f, g 2 C1(N).

That is, {f � �, g � �}M = {f, g}N � � for all f, g 2 C1(N).

Remark 2.6.2. If (M, {·, ·}) is a Poisson manifold, then (C1(M), {·, ·}) is a Poisson algebra, i.e.
a commutative, associative algebra with a Lie algebra structure satisfying the Leibniz identity.
Definition 2.6.1 states that Poisson maps are those maps � : (M, {·, ·}M )! (N, {·, ·}N ) whose
pullback �⇤ : (C1(N), {·, ·}N )! (C1(M), {·, ·}M ) is a morphism of Poisson algebras.

We now give a characterization of Poisson maps in terms of the Poisson bivectors.

Lemma 2.6.3. Let (M, {·, ·}M ) and (N, {·, ·}N ) be Poisson manifolds. Denote by ⇧M 2 X2(M)
and ⇧N 2 X2(N) the corresponding Poisson bivectors. A smooth map � : M ! N is Poisson
if and only if ⇧N and ⇧M are �-related.

Proof. First assume that ⇧N and ⇧M are �-related. For f, g 2 C1(N), we get

{f � �, g � �}M (p) = (⇧M )p
�

dp(f � �), dp(g � �)
�

= (⇧M )p
�

d�(p)f � dp�, d�(p)g � dp�
�

(chain rule)

= (⇧M )p
�

�⇤(d�(p)f),�
⇤(d�(p)g)

�

= (⇧N )�(p)

�

d�(p)f, d�(p)g
�

(Remark 2.2.1)

= {f, g}N (�(p)).

This shows that {f � �, g � �}M = {f, g}N � �, hence � is Poisson.
Conversely, assume that � is a Poisson map. We have to show that (⇧N )�(p) = (dp�)(⇧M )p
for all p 2M . It su�ces to prove this equality on di↵erentials of functions. We have

(dp�)(⇧M )p
�

d�(p)f, d�(p)g
�

= (⇧M )p
�

�⇤(d�(p)f),�
⇤(d�(p)g)

�

(Remark 2.2.1)

= (⇧M )p
�

d�(p)f � dp�, d�(p)g � dp�
�

= (⇧M )p
�

dp(f � �), dp(g � �)
�

(chain rule)

= {f � �, g � �}M (p)

= {f, g}N (�(p)) (since � is Poisson)

= (⇧N )�(p)

�

d�(p)f, d�(p)g
�

.

This shows that ⇧N and ⇧M are �-related.

Example 2.6.4. Let (M1, {·, ·}1) and (M2, {·, ·}2) be Poisson manifolds. Their direct product
M1 ⇥M2 can be equipped with the natural bracket

{f(x1, x2), g(x1, x2)} := {fx2 , gx2}1(x1) + {fx1 , gx1}2(x2),

where we use the notation hx1(x2) = hx2(x1) = h(x1, x2) for h 2 C1(M1 ⇥ M2), x1 2 M1

and x2 2 M2. This is a Poisson bracket on M1 ⇥M2, called the product Poisson structure.
With respect to this product Poisson structure, the projection maps M1 ⇥ M2 ! M1 and
M1 ⇥M2 !M2 are Poisson maps.

One last characterization of Poisson maps involves the sharp maps associated with the
Poisson bivectors. It will be useful in the next section.
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Lemma 2.6.5. Let (M,⇧M ) and (N,⇧N ) be Poisson manifolds. A smooth map � : M ! N
is Poisson if and only if the following diagram commutes for all x 2M :

T ⇤
xM TxM

T ⇤
�(x)N T�(x)N

(⇧]

M

)
x

d
x

�(d
x

�)⇤

(⇧]

N

)�(x)

Proof. It is enough to check this assertion on di↵erentials of functions. Let f 2 C1(N). We

will show that the actions of
�

dx� � (⇧]M )x � (dx�)⇤
�

(d�(x)f) and
�

⇧]N
�

�(x)
(d�(x)f) coincide on

any function g 2 C1(N) if and only if � is Poisson. We have

h

�

dx� � (⇧]M )x � (dx�)⇤
�

(d�(x)f)
i

�

g
�

=
h

�

dx� � (⇧]M )x)(d�(x)f � dx�)
i

�

g
�

=
h

�

dx� � (⇧]M )x)
�

dx(f � �)
�

i

�

g
�

=
h

dx�
�{f � �, ·}M (x)

�

i

�

g
�

= d�(x)g
�

dx�
�{f � �, ·}M (x)

��

= dx(g � �)
�{f � �, ·}M (x)

�

= {f � �, g � �}M (x),

whereas
⇥

(⇧]N )�(x)(d�(x)f)
⇤

(g) = {f, g}N (�(x)).

The claim follows.

Remark 2.6.6. Let (M,!M ) and (N,!N ) be symplectic manifolds. Then asking for a map
� : M ! N to be symplectic (i.e. �⇤!N = !M ) is not the same as asking for � to be Poisson.
For instance, consider

i : (R2, p1, q1)! (R4, p1, q1, p2, q2) : (p1, q1) 7! (p1, q1, 0, 0).

Here R2 and R4 are endowed with their respective canonical Poisson structures {·, ·}1 and
{·, ·}2. The corresponding symplectic forms are !1 = dp1 ^ dq1 and !2 = dp1 ^ dq1 + dp2 ^ dq2,
respectively. Then i is symplectic, but not Poisson since

{p2 � i, q2 � i}1 = {0, 0}1 = 0,

whereas

{p2, q2}2 � i = 1 � i = 1.

Remark 2.6.7. A symplectic realization of a Poisson manifold N is a Poisson map � : M ! N ,
whereM is a symplectic manifold. One can show that every Poisson manifold admits a surjective
submersive symplectic realization.
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2.7 Poisson vector fields

Definition 2.7.1. Let (M, {·, ·}) be a Poisson manifold. For any f 2 C1(M) we have a linear
map

Xf : C1(M)! C1(M) : h 7! Xf (h) = {f, h}.
The Leibniz identity of {·, ·} says that Xf is a derivation. It thus corresponds to a vector field,
called the hamiltonian vector field of the function f .

Remark 2.7.2. If ⇧ 2 X2(M) is the Poisson bivector corresponding to the bracket {·, ·}, then
we can write

Xf = {f, ·} = ◆df⇧ = ⇧](df).

The assignment C1(M)! X(M) : f 7! Xf is a morphism of Lie algebras:

Lemma 2.7.3. Let (M, {·, ·}) be a Poisson manifold. Then

[Xf , Xg] = X{f,g}.

Proof. For h 2 C1(M), we have

�

[Xf , Xg]�X{f,g}
�

h = XfXgh�XgXfh�X{f,g}h

= Xf{g, h}�Xg{f, h}� {{f, g}, h}
= {f, {g, h}}� {g, {f, h}}� {{f, g}, h}
= �{{f, g}, h}� {{g, h}, f}� {{h, f}, g}
= 0,

where we used skew-symmetry of {·, ·} and the Jacobi identity.

Hamiltonian vector fields are expressed in local coordinates as follows.

Lemma 2.7.4. Let (M, {·, ·}) be a Poisson manifold with local coordinates (U, x1, . . . , xn). Then
for all f 2 C1(M):

Xf |U =
n
X

i,j=1

{xi, xj} @f
@xi

@

@xj
=

n
X

j=1

{f, xj} @

@xj
.

Proof. Writing

⇧ =
1

2

n
X

i,j=1

{xi, xj} @

@xi
^ @

@xj

for the associated Poisson bivector, we get on U that

Xf = ◆df⇧ =
1

2

n
X

i,j=1

{xi, xj}
✓

@f

@xi

@

@xj
� @f

@xj

@

@xi

◆

=
1

2

n
X

i,j=1

{xi, xj} @f
@xi

@

@xj
� 1

2

n
X

i,j=1

{xi, xj} @f
@xj

@

@xi

=
n
X

i,j=1

{xi, xj} @f
@xi

@

@xj
,
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where the last equality is obtained by re-indexing i $ j in the second summation and using
skew-symmetry of {·, ·}. Noting that

{f, xj} = ⇧(df, dxj) = ⇧

 

n
X

i=1

@f

@xi
dxi, dxj

!

=
n
X

i=1

⇧(dxi, dxj)
@f

@xi
=

n
X

i=1

{xi, xj} @f
@xi

finishes the proof.

Poisson vector fields are the infinitesimal automorphisms of the Poisson structure.

Definition 2.7.5. Let (M, {·, ·}) be a Poisson manifold with Poisson bivector ⇧. A vector field
X 2 X(M) is a Poisson vector field if the following equivalent conditions hold:

1. £X⇧ = 0;

2. X({f, g}) = {X(f), g}+ {f,X(g)} for all f, g 2 C1(M);

3. The flow {�t} of X consists of local Poisson di↵eomorphisms.

Proof. We have

£X{f, g} = £Xh⇧, df ^ dgi = h£X⇧, df ^ dgi+ h⇧,£X(df ^ dg)i (Leibniz rule for pairing)

= h£X⇧, df ^ dgi+ h⇧, (£Xdf) ^ dgi+ h⇧, df ^ (£Xdg)i
= h£X⇧, df ^ dgi+ h⇧, d£Xf ^ dgi+ h⇧, df ^ d£Xgi (d and £X commute)

= h£X⇧, df ^ dgi+ h⇧, dX(f) ^ dgi+ h⇧, df ^ dX(g)i.

Hence
X({f, g}) = (£X⇧)(df, dg) + {X(f), g}+ {f,X(g)}

or
(£X⇧)(df, dg) = X({f, g})� {X(f), g}� {f,X(g)}.

This proves that 1., 2.
Next, recall the classical formula (see Lemma 8.2.3 in the appendix)

d

dt
⇢⇤t!t = ⇢⇤t

✓

£v
t

!t +
d!t

dt

◆

.

Here {!t} is a smooth family of di↵erential k-forms, and {⇢t} is an isotopy with corresponding
time dependent vector field {vt}. In case {�t} is the flow of the vector field X, we get

d

dt

�{f � �t, g � �t} � ��t
�

=
d

dt
�⇤�t{�⇤t f,�⇤t g} = ��⇤�t

✓

X{�⇤t f,�⇤t g}�
d

dt
{�⇤t f,�⇤t g}

◆

= ��⇤�t (X{�⇤t f,�⇤t g}) + �⇤�t

✓

� d

dt
�⇤t f,�

⇤
t g
 

+
�

�⇤t f,
d

dt
�⇤t g

 

◆

= ��⇤�t (X{�⇤t f,�⇤t g}) + �⇤�t

��

�⇤tX(f),�⇤t g
 

+
�

�⇤t f,�
⇤
tX(g)

 �

= ��⇤�t (X{�⇤t f,�⇤t g}) + �⇤�t

��

X(�⇤t f),�
⇤
t g
 

+
�

�⇤t f,X(�⇤t g)
 �

.

(2.5)

If {�t} consists of Poisson di↵eomorphisms, then

d

dt

�{f � �t, g � �t} � ��t
�

=
d

dt
{f, g} = 0,
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hence the right hand side of Equation (2.5) is zero for all times t. As �0 is the identity map,
we obtain for t = 0 that

X({f, g}) = {X(f), g}+ {f,X(g)}.
Conversely, if 2. holds then the right hand side of Equation (2.5) is zero. This implies that

{f � �t, g � �t} � ��t = {f � �0, g � �0} � �0 = {f, g},
that is, {�t} consists of Poisson di↵eomorphisms. This proves that 2., 3.

Remark 2.7.6. The second characterization in Definition 2.7.5 above says that Poisson vector
fields are the derivations of the Poisson algebra (C1(M), {·, ·}), both with respect to · and to
{·, ·}.
Remark 2.7.7. Hamiltonian vector fields are Poisson. Indeed:

Xh({f, g})� {Xh(f), g}� {f,Xh(g)} = {h, {f, g}}� {{h, f}, g}� {f, {h, g}}
= �{{f, g}, h}� {{g, h}, f}� {{h, f}, g}
= 0 (Jacobi identity).

The converse is not true in general, not even locally. For instance, if the Poisson structure
is identically zero, then every vector field is Poisson while the zero vector field is the only
hamiltonian vector field.

2.8 Poisson cohomology

Poisson manifolds have a cohomology theory of their own: Poisson cohomology. We will discuss
this invariant and address its relation with de Rham cohomology.

Lemma 2.8.1. Let (M,⇧) be a Poisson manifold. Then for any multivector field ⇠ 2 Xk(M),
we have

[⇧, [⇧, ⇠]] = 0.

Proof. By the graded Jacobi identity in
�

X•�1(M), [·, ·]� (see Remark 2.2.3), we have

� [[⇧, ⇠],⇧] + (�1)k�1[[⇠,⇧],⇧] + (�1)k�1[[⇧,⇧], ⇠] = 0. (2.6)

Since ⇧ is Poisson, [⇧,⇧] = 0. Graded skew-symmetry of [·, ·] gives [⇠,⇧] = �(�1)k�1[⇧, ⇠].
Hence Equation (2.6) becomes

�2[[⇧, ⇠],⇧] = 0.

As [⇧, [⇧, ⇠]] equals [[⇧, ⇠],⇧] up to sign, it follows that [⇧, [⇧, ⇠]] = 0.

Definition 2.8.2. Let (M,⇧) be a Poisson manifold. Denote by d⇧ : X•(M) ! X•+1(M) the
R-linear operator defined by

d⇧(⇠) = [⇧, ⇠].

Lemma 2.8.1 states that d⇧ is a di↵erential, that is d⇧ � d⇧ = 0. We get a cochain complex
(X•(M), d⇧) :

· · · d⇧�! Xk�1(M)
d⇧�! Xk(M)

d⇧�! Xk+1(M)
d⇧�! · · · ,

called the Lichnerowicz complex. The cohomology of this complex is the Poisson cohomology.
That is, the Poisson cohomology groups are

Hk
⇧(M) :=

Ker
�

d⇧ : Xk(M)! Xk+1(M)
�

Im
�

d⇧ : Xk�1(M)! Xk(M)
� .
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Remark 2.8.3. The low-dimensional Poisson cohomology groups have an easy interpretation.
Using Lemma 2.2.5, we see that [⇧, f ] = �◆df⇧ = �Xf . Hence

H0
⇧(M) = {f 2 C1(M) : [⇧, f ] = 0} = {f 2 C1(M) : Xf = 0},

so H0
⇧(M) is the space of the so-called Casimir functions.

Next, noting that [⇧, X] = �£X⇧, we obtain for the first Poisson cohomology that

H1
⇧(M) =

{X 2 X(M) : [⇧, X] = 0}
{[⇧, f ] : f 2 C1(M)} =

{X 2 X(M) : £X⇧ = 0}
{X�f : f 2 C1(M)} =

{Poisson vector fields}
{Hamiltonian vector fields} .

The second Poisson cohomology group is by definition

H2
⇧(M) =

�

⇤ 2 X2(M) : [⇧,⇤] = 0
 

{[⇧, Y ] : Y 2 X(M)} .

To find an interpretation of H2
⇧(M), we consider a formal one-parameter deformation of ⇧ by

⇧(✏) = ⇧+ ✏⇧1 + ✏2⇧2 + · · · ,
for ⇧i 2 X2(M) and ✏ a formal infinitesimal parameter. The condition for ⇧(✏) to be a Poisson
bivector is

0 = [⇧(✏),⇧(✏)] = [⇧,⇧] + 2✏[⇧,⇧1] + ✏2 (2[⇧,⇧2] + [⇧1,⇧1]) + · · ·
Since ⇧ is Poisson, we have [⇧,⇧] = 0. If [⇧,⇧1] = 0, then the bivector ⇧ + ✏⇧1 satisfies the
Jacobi identity up to order ✏2:

[⇧+ ✏⇧1,⇧+ ✏⇧1] = 0 +O(✏2).

We then call ⇧1 an infinitesimal deformation of ⇧. In case ⇧1 = [⇧, Y ] = �£Y ⇧ for some
Y 2 X(M), then ⇧1 is called a trivial infinitesimal deformation of ⇧. This terminology is
motivated by the following observation. Let '�✏ denote the time �✏ flow of �Y . Then the
pushforwards ('�✏)⇤⇧ are again Poisson structures, since by Lemma 8.3.2

⇥

('�✏)⇤⇧, ('�✏)⇤⇧
⇤

= ('�✏)⇤ [⇧,⇧] = 0.

Moreover,
d

d✏
('�✏)⇤⇧

�

�

�

�

✏=0

= £�Y ⇧ = ⇧1,

so that we have an expansion

('�✏)⇤⇧ = ⇧+ ✏⇧1 +O(✏2).

We now see that the infinitesimal deformation ⇧1 is trivial in the sense that the Poisson struc-
tures ('�✏)⇤⇧ are essentially the same, only expressed in di↵erent coordinates. We conclude

H2
⇧(M) =

{Infinitesimal deformations of ⇧}
{Trivial infinitesimal deformations of ⇧} .

Heuristically, H2
⇧(M) = T⇧M is the “tangent space” at ⇧ to the moduli space of Poisson

structures on M , which is obtained by factoring out di↵eomorphic Poisson structures:

M =
Poiss(M)

Di↵(M)
.
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Recall that a Poisson tensor ⇧ induces a bundle map ⇧] : T ⇤M ! TM . By taking exterior
powers, we extend it to a map ^kT ⇤M ! ^kTM . On the level of sections, this is a C1(M)-
linear map, given by

⌦k(M)! Xk(M) : ↵1 ^ · · · ^ ↵k 7! ⇧](↵1) ^ · · · ^⇧](↵k).

We will denote this map by ⇧] as well. By convention, ⇧](f) = f for all f 2 C1(M) = ⌦0(M).

Lemma 2.8.4. Up to sign, the map ⇧] : ⌦•(M)! X•(M) is a chain map between the de Rham
complex

· · · d�! ⌦k�1(M)
d�! ⌦k(M)

d�! ⌦k+1(M)
d�! · · ·

and the Lichnerowicz complex

· · · d⇧�! Xk�1(M)
d⇧�! Xk(M)

d⇧�! Xk+1(M)
d⇧�! · · · .

That is, ⇧](d⌘) = �d⇧(⇧](⌘)) for all ⌘ 2 ⌦k(M).

Proof. By induction on the degree k of ⌘.
If ⌘ 2 C1(M), then

�d⇧(⇧](⌘)) = �d⇧(⌘) = �[⇧, ⌘] = ◆d⌘⇧ = ⇧](d⌘).

If ⌘ = df is an exact 1-form, then

⇧](d⌘) = ⇧](d2f) = 0,

and
d⇧(⇧

](⌘)) = d⇧(Xf ) = [⇧, Xf ] = �£X
f

⇧ = 0,

since hamiltonian vector fields are Poisson.
If the formula holds for ⌘ 2 ⌦p(M) and µ 2 ⌦q(M), then it also holds for ⌘ ^ µ. Indeed,

⇧]
�

d(⌘ ^ µ)
�

= ⇧]
�

d⌘ ^ µ+ (�1)p⌘ ^ dµ
�

= ⇧](d⌘) ^⇧](µ) + (�1)p⇧](⌘) ^⇧](dµ)

= �d⇧
�

⇧](⌘)
� ^⇧](µ)� (�1)p⇧](⌘) ^ d⇧

�

⇧](µ)
�

= �[⇧,⇧](⌘)] ^⇧](µ)� (�1)p⇧](⌘) ^ [⇧,⇧](µ)]

= �[⇧,⇧](⌘) ^⇧](µ)]

= �d⇧
�

⇧](⌘ ^ µ)
�

.

Corollary 2.8.5. We have an induced morphism between cohomology groups

[⇧]] : Hk
dR(M)! Hk

⇧(M) : [⌘] 7! [⇧](⌘)].

There are some algebraic topological tools for computing Poisson cohomology, one of which
is the Mayer-Vietoris sequence. However, explicit computation of Poisson cohomology remains
a hard problem. Poisson cohomology groups are generically very big and infinite-dimensional,
which is in contrast with de Rham cohomology (for instance, de Rham cohomology groups of a
compact manifold are finite-dimensional).

Example 2.8.6. If M is equipped with the zero Poisson structure ⇧ ⌘ 0, then

H0
⇧(M) = C1(M) and H1

⇧(M) = X(M).

In particular, H0
⇧(M) and H1

⇧(M) are infinite dimensional (as vector spaces over R).
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Example 2.8.7. If (M,⇧) is symplectic, then ⇧] : T ⇤M ! TM is an isomorphism of vector
bundles. Hence the same holds for its exterior powers ⇧] : ^kT ⇤M ! ^kTM . It follows that on
the chain level, we get isomorphisms of C1(M)-modules ⇧] : ⌦k(M)! Xk(M). Since passing
to cohomology is functorial, it follows that the induced maps on cohomology

[⇧]] : Hk
dR(M)! Hk

⇧(M)

are isomorphisms. Hence for a symplectic manifold, the Poisson cohomology groups are isomor-
phic to the de Rham cohomology groups.

2.9 Modular vector fields

We dedicate this section to a specific kind of Poisson vector fields, called modular vector fields.
They will play an important role in this thesis.

Definition 2.9.1. Let (Mn,⇧) be an orientable Poisson manifold. Fix a volume form ⌦ on M .
The modular vector field X⌦

⇧ is the derivation given by the map

X⌦
⇧ : C1(M)! C1(M) : f 7! £X

f

⌦

⌦
. (2.7)

Remark 2.9.2. Since ^nT ⇤M is a line bundle, £X
f

⌦ and ⌦ di↵er by a factor in C1(M).
Hence, the expression on the right in (2.7) is indeed a smooth function.

So the modular vector field measures to what extent Hamiltonian vector fields preserve a
given volume form. Let us first check that the definition makes sense.

Lemma 2.9.3. The assignment f 7! £
X

f

⌦

⌦ is a derivation of C1(M).

Proof. Since linearity is clear, we only check the Leibniz rule. Let f, g, h 2 C1(M). The Leibniz
rule for the Poisson bracket {·, ·} implies that

Xfg(h) = {fg, h} = f{g, h}+ g{f, h} = fXg(h) + gXf (h),

whence Xfg = fXg + gXf . Using Cartan’s magic formula, we compute:

£X
fg

⌦ = £fX
g

+gX
f

⌦ = d
�

◆fX
g

+gX
f

⌦
�

+ ◆fX
g

+gX
f

d⌦

= d
�

f ◆X
g

⌦
�

+ d
�

g◆X
f

⌦
�

+ f ◆X
g

d⌦+ g◆X
f

d⌦

= df ^ �◆X
g

⌦
�

+ fd
�

◆X
g

⌦
�

+ dg ^ �◆X
f

⌦
�

+ gd
�

◆X
f

⌦
�

+ f ◆X
g

d⌦+ g◆X
f

d⌦

= f
�

d
�

◆X
g

⌦
�

+ ◆X
g

d⌦
�

+ g
�

d
�

◆X
f

⌦
�

+ ◆X
f

d⌦
�

+ df ^ �◆X
g

⌦
�

+ dg ^ �◆X
f

⌦
�

= f£X
g

⌦+ g£X
f

⌦+ df ^ �◆X
g

⌦
�

+ dg ^ �◆X
f

⌦
�

.

Now note that, since ⌦ is of top degree: df ^⌦ = 0. It follows that, for any Y 2 X(M), we have

0 = ◆Y (df ^ ⌦) = df(Y )⌦� df ^ (◆Y ⌦) = Y (f)⌦� df ^ (◆Y ⌦) .

In particular,
(

df ^ �◆X
g

⌦
�

= Xg(f)⌦ = {g, f}⌦
dg ^ �◆X

f

⌦
�

= Xf (g)⌦ = {f, g}⌦ = �{g, f}⌦ .

So df ^ �◆X
g

⌦
�

= �dg ^ �◆X
f

⌦
�

and this implies that £X
fg

⌦ = f£X
g

⌦+ g£X
f

⌦.
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Example 2.9.4. Let (M2n,⇧) be a symplectic manifold, with symplectic form ! = �⇧�1. Let
us compute the modular vector field X!n

⇧ associated with the volume form !n. For f 2 C1(M),
we have

Xf = ⇧](df) = �(![)�1(df),

which implies that ◆X
f

! = �df . Using Cartan’s magic formula, we get

£X
f

! = d(◆X
f

!) + ◆X
f

d! = �d2f + ◆X
f

d! = 0,

where the last equality holds since d2 = 0 and ! is closed. Using the derivation property of
£X

f

, we obtain by induction that also £X
f

!n = 0. We conclude that X!n

⇧ = 0.

Proposition 2.9.5. Let (M,⇧) be an orientable Poisson manifold with volume form ⌦. The
modular vector field X⌦

⇧ is a Poisson vector field.

Proof. Let f, g 2 C1(M). We will prove that

X⌦
⇧ ({f, g}) = {X⌦

⇧(f), g}+ {f,X⌦
⇧(g)}. (2.8)

We have

X⌦
⇧ ({f, g})⌦ = £X{f,g}⌦

= £[X
f

,X
g

]⌦ (Lemma 2.7.3)

=
⇥

£X
f

,£X
g

⇤

⌦ (Cartan calculus)

= £X
f

�

£X
g

⌦
��£X

g

�

£X
f

⌦
�

= £X
f

�

X⌦
⇧(g)⌦

��£X
g

�

X⌦
⇧(f)⌦

�

= £X
f

�

X⌦
⇧(g)

�

⌦+X⌦
⇧(g)£X

f

⌦�£X
g

�

X⌦
⇧(f)

�

⌦�X⌦
⇧(f)£X

g

⌦.

Note that
(

X⌦
⇧(f)£X

g

⌦ = X⌦
⇧(f)X

⌦
⇧(g)⌦

X⌦
⇧(g)£X

f

⌦ = X⌦
⇧(g)X

⌦
⇧(f)⌦

,

hence X⌦
⇧(f)£X

g

⌦ = X⌦
⇧(g)£X

f

⌦. We obtain

X⌦
⇧ ({f, g})⌦ = £X

f

�

X⌦
⇧(g)

�

⌦�£X
g

�

X⌦
⇧(f)

�

⌦

= Xf

�

X⌦
⇧(g)

�

⌦�Xg
�

X⌦
⇧(f)

�

⌦

= {f,X⌦
⇧(g)}⌦� {g,X⌦

⇧(f)}⌦
=
⇥{X⌦

⇧(f), g}+ {f,X⌦
⇧(g)}

⇤

⌦,

which implies what we set out to prove (2.8).

We now describe how the modular vector field depends on the choice of volume form.

Proposition 2.9.6. Let (Mn,⇧) be an orientable Poisson manifold. Let ⌦ be a volume form on
M with associated modular vector field X⌦

⇧ . Changing the volume form ⌦ changes the modular
vector field X⌦

⇧ by a hamiltonian vector field:

Xh⌦
⇧ = X⌦

⇧ �Xlog |h|,

where h 2 C1(M) is a non-vanishing function.
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Proof. Since ^nT ⇤M is a line bundle, any volume form on M is of the form h⌦ for some
non-vanishing function h 2 C1(M). For any f 2 C1(M), we have

Xh⌦
⇧ (f) =

£X
f

(h⌦)

h⌦
=

Xf (h)⌦+ h£X
f

⌦

h⌦
=

Xf (h)

h
+

£X
f

⌦

⌦
=

Xf (h)

h
+X⌦

⇧(f).

Since by the chain rule

Xf (log |h|) = d(log |h|)(Xf ) =
1

h
dh(Xf ) =

1

h
Xf (h),

we get
Xh⌦

⇧ (f) = Xf (log |h|) +X⌦
⇧(f) = �Xlog |h|(f) +X⌦

⇧(f).

This shows that
Xh⌦

⇧ = X⌦
⇧ �Xlog |h|.

By Proposition 2.9.5, the modular vector field X⌦
⇧ defines a cohomology class

⇥

X⌦
⇧

⇤

in the
first Poisson cohomology group H1

⇧(M). Proposition 2.9.6 implies that this cohomology class
does not depend on the chosen volume form:

⇥

X⌦
⇧

⇤

= [X⇧] 2 H1
⇧(M).

Definition 2.9.7. The cohomology class [X⇧] 2 H1
⇧(M) of the modular vector field (with

respect to any volume form) is called the modular class of M . If this cohomology class is zero,
then M is called unimodular.

Example 2.9.8. Example 2.9.4 shows that symplectic manifolds are unimodular.

Remark 2.9.9. On non-orientable Poisson manifolds, one can still define modular vector fields
using densities instead of volume forms. We will leave this fact out of consideration.

2.10 Poisson submanifolds

Definition 2.10.1. A Poisson submanifold of a Poisson manifold (M,⇧M ) is a Poisson manifold
(N,⇧N ) together with an injective immersion i : N ,!M that is a Poisson map.

One often identifies an immersed submanifold i : N ,! M with its image in M , so that
one can assume that i is the inclusion map. The tangent space TxN for x 2 N can then be
considered as a subspace of TxM .

Proposition 2.10.2. Let (M,⇧M ) be a Poisson manifold. Given an immersed submanifold
N ,!M , there is at most one Poisson structure ⇧N on N that makes (N,⇧N ) into a Poisson
submanifold. Such ⇧N exists, if and only if any of the following equivalent conditions hold:

1. (⇧M )]
x

(T ⇤
xM) ⇢ TxN for all x 2 N .

2. For every f 2 C1(M), the hamiltonian vector field Xf 2 X(M) is tangent to N .

3. For all x 2 N , the bivector (⇧M )x is tangent to N . That is, (⇧M )x 2 ^2TxN .

Proof. We first show that the conditions mentioned are equivalent. Since for f 2 C1(M) and
x 2 N , we have (Xf )x = (⇧M )]

x

(dxf), it is clear that 1. and 2. are equivalent.
Next, denoting d = dim(M) and s = dim(N), let (x1, . . . , xd) be adapted coordinates around
x 2 N , so that N is locally given by xs+1 = · · · = xd = 0. In these coordinates, we write

Xf =
s
X

j=1

{f, xj} @

@xj
+

d
X

j=s+1

{f, xj} @

@xj
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⇧M =
X

1i<js

{xi, xj} @

@xi
^ @

@xj
+

1

2

d
X

i=1

d
X

j=s+1

{xi, xj} @

@xi
^ @

@xj
.

Assuming that all hamiltonian vector fields on M are tangent to N then implies {f, xj}(x) = 0
for j = s+1, . . . , d, where f is any smooth function onM locally defined around x. In particular,
{xi, xj}(x) = 0 for i = 1, . . . , d and j = s+ 1, . . . , d. This implies that

(⇧M )x =

0

@

X

1i<js

{xi, xj} @

@xi
^ @

@xj

1

A

x

2 ^2TxN.

Conversely, if (⇧M )x 2 ^2TxN , then {xi, xj}(x) = 0 for i = 1, . . . , d and j = s+ 1, . . . , d. Then

(Xf )x =

0

@

n
X

i,j=1

{xi, xj} @f
@xi

@

@xj

1

A

x

=

0

@

n
X

i=1

s
X

j=1

{xi, xj} @f
@xi

@

@xj

1

A

x

2 TxN.

This shows that 2. and 3. are equivalent.
Now assume that i : (N,⇧N ) ,! (M,⇧M ) is a Poisson submanifold. Lemma 2.6.5 gives a
commutative diagram

T ⇤
xN TxN

T ⇤
xM TxM

(⇧]

N

)
x

d
x

i(d
x

i)⇤

(⇧]

M

)
x

(2.9)

That is,
dxi � (⇧]N )x � (dxi)⇤ = (⇧]M )x for all x 2 N. (2.10)

This shows that (⇧M )]
x

(T ⇤
xM) ⇢ dxi(TxN) for x 2 N . Since we identify dxi(TxN) with TxN ,

we obtain 1. Also, since dxi is injective and (dxi)⇤ is surjective, the relation (2.10) uniquely

determines (⇧]N )x. This proves the uniqueness statement of Proposition 2.10.2.
Conversely, given an immersion i : N ,! M , assume that (⇧M )]

x

(T ⇤
xM) ⇢ TxN for all x 2 N .

The natural vector bundle map i⇤ : T ⇤M |N ! T ⇤N is surjective, whence it has a splitting

j : T ⇤N ! T ⇤M |N . We define ⇧]N := ⇧]M |N �j, which is a map T ⇤N ! TN by the assumption.
It is smooth by composition, and its definition does not depend on the choice of splitting.
Indeed, let x 2 N and ↵,�, ✓ 2 T ⇤

xM such that ↵|T
x

N = �|T
x

N . Then

⌦

(⇧]M )x(↵)� (⇧]M )x(�), ✓
↵

=
⌦

(⇧]M )x(↵� �), ✓
↵

= �⌦(⇧]M )x(✓),↵� �
↵

= 0,

as by assumption (⇧]M )x(✓) 2 TxN and (↵ � �)|T
x

N = 0. By construction, ⇧]N makes the
diagram (2.9) commute. It remains to show that ⇧N is Poisson, i.e. that [⇧N ,⇧N ] = 0.
Commutativity of the diagram (2.9) implies that ⇧N and ⇧M are i-related. (Use Lemmas
2.6.5 and 2.6.3. Note that at this point, ⇧N is only almost Poisson, whereas the aforementioned
Lemmas are stated for Poisson structures. Notice however that their statements nor their proofs
make use of the Jacobi identity or of the Schouten bracket being zero, which indicates that they
hold more generally for almost Poisson structures.) By Lemma 8.3.2 in the appendix, also
[⇧N ,⇧N ] and [⇧M ,⇧M ] are i-related. As [⇧M ,⇧M ] = 0 this means that

(dxi)[⇧N ,⇧N ]x = 0 for all x 2 N.
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This in turn implies that [⇧N ,⇧N ]x = 0 at x 2 N . Indeed, surjectivity of (dxi)⇤ : T ⇤
xM ! T ⇤

xN
gives that for any f1, f2, f3 2 C1(N):

[⇧N ,⇧N ]x(dxf1, dxf2, dxf3) = [⇧N ,⇧N ]x ((dxi)
⇤↵1, (dxi)

⇤↵2, (dxi)
⇤↵3)

= [⇧N ,⇧N ]x (↵1 � dxi,↵2 � dxi,↵3 � dxi)
=
�

(dxi)[⇧N ,⇧N ]x
�

(↵1,↵2,↵3)

= 0.

We conclude that [⇧N ,⇧N ] = 0, hence ⇧N is the unique Poisson structure on N that makes N
into a Poisson submanifold of M .

Example 2.10.3. If (M,⇧) is symplectic, then ⇧]x(T ⇤
xM) = TxM for all x 2 M . It follows

that the only Poisson submanifolds of (M,⇧) are open subsets of M . By contrast, there are
many more symplectic submanifolds of M (for instance, any point {p} ⇢M).

2.11 The splitting theorem

The splitting theorem is a normal form theorem that describes Poisson structures locally. It
generalizes the Darboux theorem for symplectic manifolds to arbitrary Poisson manifolds. We
will need the following lemma.

Lemma 2.11.1. If M is an m-dimensional manifold and X1, . . . , Xn are vector fields defined
on an open subset U ⇢M such that:

1. {X1(q), . . . , Xn(q)} is linearly independent at each q 2 U ;

2. [Xi, Xj ] = 0 on U , for 1  i, j  n,

then any p 2 U has a coordinate neighborhood (V, x1, . . . , xm) such that Xj = @
@x

j

on V , for
j = 1, . . . , n.

Proof. See [Sh].

Theorem 2.11.2 (Weinstein’s splitting theorem). Let (M,⇧) be a Poisson manifold, and x0 2
M with rank(⇧x0) = 2k. Then there exists a coordinate system (p1, . . . , pk, q1, . . . , qk, y1, . . . , yl)
centered at x0 such that

⇧ =
k
X

i=1

@

@qi
^ @

@pi
+

X

1i<jl

�i,j(y1, . . . , yl)
@

@yi
^ @

@yj
,

and �i,j(0, . . . , 0) = 0.

Proof. If rank(⇧x0) = 0, then any coordinate system (y1, . . . , yn) centered at x0 satisfies the

theorem. So assume that rank(⇧x0) > 0, i.e. ⇧]x0 : T ⇤
x0
M ! Tx0M is not the zero map. This

implies that there exists a function f , locally defined around x0, such that ⇧](df) = Xf is
non-vanishing. Lemma 2.11.1 implies the existence of coordinates (p1, . . .) around x0 such that
Xf = @

@p1
. We then have

{f, p1} = Xf (p1) =
@

@p1
p1 = 1, (2.11)

hence
[Xf , Xp1 ] = X{f,p1} = X1 = 0.
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Here, the first equality is Lemma 2.7.3 and the last equality follows from the Leibniz identity
for the bracket {·, ·}. Define q1 := f .
Note that Xq1 and Xp1 are linearly independent everywhere, since Xq1(x) = �Xp1(x) would
imply

{q1, p1}(x) = Xq1(x)(p1) = �Xp1(x)(p1) = �{p1, p1}(x) = 0,

which contradicts (2.11). We can again use Lemma 2.11.1 to find coordinates (y1, . . . , yn) around
x0 such that Xp1 = @

@y1
and Xq1 = @

@y2
. We now take (p1, q1, y3, . . . , yn) as a new system of

coordinates. Indeed, the map  : (y1, . . . , yn) 7! (p1, q1, y3, . . . , yn) has Jacobian matrix

2

6

6

6

6

6

6

4

@p1
@y1

@p1
@y2

. . . . . . . . . . . . .
@q1
@y1

@q1
@y2

. . . . . . . . . . . . .
@y3
@y1

@y3
@y2

@y3
@y3

. . . @y3
@y

n

...
...

...
...

@y
n

@y1
@y

n

@y2
@y

n

@y3
. . . @y

n

@y
n

3

7

7

7

7

7

7

5

=

2

4

0 1 F
�1 0

0 I(n�2)⇥(n�2)

3

5 ,

which follows from the computations
8

>

>

>

>

<

>

>

>

>

:

@p1
@y1

= Xp1(p1) = {p1, p1} = 0
@p1
@y2

= Xq1(p1) = {q1, p1} = 1
@q1
@y1

= Xp1(q1) = {p1, q1} = �1
@q1
@y2

= Xq1(q1) = {q1, q1} = 0.

The latter matrix has nonzero determinant (equal to 1), which shows that  is indeed a change
of coordinates. In these coordinates, we have

• {q1, p1} = 1;

• {p1, yi} = Xp1(yi) =
@y

i

@y1
= 0 for i � 3;

• {q1, yi} = Xq1(yi) =
@y

i

@y2
= 0 for i � 3.

Hence

⇧ =
@

@q1
^ @

@p1
+

X

3i<jn

�i,j(p1, q1, y3, . . . , yn)
@

@yi
^ @

@yj
,

where �i,j = {yi, yj}. In fact, the �i,j don’t depend on the variables p1, q1:

@

@p1
�i,j =

@

@p1
{yi, yj} = Xq1{yi, yj} = {q1, {yi, yj}}

= {{yj , q1}, yi}+ {{q1, yi}, yj} (Jacobi identity)

= 0.

Also, note that Xp1 = � @
@q1

(use Lemma 2.7.4). Hence

@

@q1
�i,j =

@

@q1
{yi, yj} = �Xp1{yi, yj} = �{p1, {yi, yj}}

= {yi, {yj , p1}}+ {yj , {p1, yi}} (Jacobi identity)

= 0.

Hence,

⇧ =
@

@q1
^ @

@p1
+

X

3i<jn

�i,j(y3, . . . , yn)
@

@yi
^ @

@yj
:=

@

@q1
^ @

@p1
+⇧0.
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Now note that ⇧0 is a Poisson structure on an (n � 2)-dimensional manifold with coordinates
(y3, . . . , yn). Indeed, let {·, ·} be the bracket corresponding to ⇧ and {·, ·}0 the bracket corre-
sponding to ⇧

0
(a priori, the latter is only almost Poisson). If f, g are functions only depending

on the coordinates y3, . . . , yn, then we have

{f, g} = ⇧(df, dg) = ⇧0(df, dg) = {f, g}0.

Since {·, ·} satisfies the Jacobi identity, this implies that also {·, ·}0 satisfies the Jacobi identity.
Hence we can repeat our argument for the Poisson structure ⇧0, and conclude by induction on
the rank of ⇧ at x0.

Remark 2.11.3. The splitting theorem states that around any point x, a Poisson manifold is a
direct product of a symplectic manifold (with symplectic form

Pk
i=1 dqi^dpi), and a transverse

Poisson manifold with Poisson structure vanishing at x. This explains how the theorem received
its name: a Poisson structure splits locally into a non-degenerate part and a singular part.

Figure 2.1: The Poisson structure on M locally splits into a symplectic structure on the locus
{y = 0} and a transverse Poisson structure vanishing at x.

2.12 The symplectic foliation

In this section, we will show that a Poisson manifold is naturally partitioned into symplectic
manifolds. The appropriate notion in this context is that of a foliation.

Definition 2.12.1. A singular foliation of a manifold M is a partition F = {F↵} of M in
immersed connected submanifolds F↵, called leaves, that satisfies the following property around
any x 2M : if Fx is the leaf containing x, and m = dim(M) and d = dim(Fx), then there exists
a chart h = (y1, . . . , ym) : U ! (�✏, ✏)m such that the path connected component of Fx \ U
containing x is given by {yd+1 = · · · = ym = 0}, and each level set {yd+1 = cd+1, . . . , ym = cm}
(where cd+1, . . . , cm are constants) is completely contained in some leaf F↵ of F . If all leaves
F↵ of F have the same dimension, then F is called a regular foliation.

Remark 2.12.2. Phrased di↵erently, a regularly foliated manifold M is locally modelled as an
a�ne space decomposed into parallel a�ne subspaces.
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Figure 2.2: A regular 1-dimensional foliation. Figure taken from [Mil]

Definition 2.12.3. A singular distribution � ⇢ TM is the assignment to each x 2 M of a
subspace �x ⇢ TxM , i.e.

� =
G

x2M
�x.

A singular distribution � is smooth if for all x 2 M and v 2 �x, there exists a vector field X
locally defined around x, such that X is tangent to � and X(x) = v. If dim(�x) is independent
of x, then the distribution � is called regular.

Example 2.12.4. Let F be a singular foliation. If Fx denotes the leaf of F containing x, then
let �F

x := TxFx. This defines a smooth singular distribution �F , called the tangent distribution
of the foliation F .

Definition 2.12.5. An integral submanifold of a smooth singular distribution � on M is a
connected immersed submanifold N ,! M such that TqN = �q for all q 2 N . An integral
submanifold is maximal if it is not contained in any strictly larger integral submanifold.

If a point x 2 M is contained in an integral submanifold of �, then it is contained in a
unique maximal one.

Definition 2.12.6. A smooth singular distribution � on M is integrable if every point of M
is contained in an integral submanifold of �. If this is the case, then each point lies in a unique
maximal integral submanifold, so the maximal integral submanifolds form a partition of M .

Definition 2.12.7. A smooth singular distribution � on M is generated by a family C of vector
fields if at each point x 2M , �x is spanned by the values at x of the vector fields of C.
A distribution � is invariant with respect to a family C of vector fields if for all X 2 C:

(dx�t)�x = ��
t

(x). (2.12)

Here (�t) is the local flow of X, and Equation (2.12) has to hold wherever �t(x) is defined.

The classical Stefan-Sussmann theorem relates these concepts.

Theorem 2.12.8 (Stefan-Sussmann). Let � be a smooth singular distribution on M . The
following are equivalent:

1. � is integrable.

2. � is generated by a family C of vector fields, and is invariant with respect to C.
3. � is the tangent distribution �F of a singular foliation F .

Proof. See for instance [DT].

38



Definition 2.12.9. A distribution � is involutive if it is closed under the Lie bracket. That is,
if X,Y are vector fields tangent to �, then also their Lie bracket [X,Y ] is tangent to �.

Example 2.12.10. If X 2 X(M) is a non-vanishing vector field, then span{X} is a smooth
regular involutive distribution by skew-symmetry of the Lie bracket.

We now focus on regular distributions.

Definition 2.12.11. Let � be a regular distribution of dimension n on Mn+k. We say that �
is completely integrable if each point p 2 M has a coordinate neighborhood (U, x1, . . . , xn+k)

such that
n

@
@x1

, . . . , @
@x

n

o

is a local basis for � on U .

One clearly has

completely integrable ) integrable ) involutive.

Indeed, if q 2 M is contained in a coordinate neighborhood as in Definition 2.12.11, and q
has coordinates (a1, . . . , an+k), then the slice xn+1 = an+1, . . . , xn+k = an+k is an integral
submanifold through q. As for the second implication, we take X,Y 2 �(�) defined near q. Let
N be an integral submanifold of � containing q. Then X and Y are tangent to N , hence so is
their Lie bracket [X,Y ] (see Lemma 4.1.9). Therefore, [X,Y ](q) 2 �q.

The classical Frobenius theorem states that the implications above are actually equivalences:

completely integrable , integrable , involutive.

Theorem 2.12.12 (Frobenius). A smooth regular distribution is involutive if and only if it is
completely integrable.

Proof. See for instance [Lee].

Remark 2.12.13. Frobenius’ theorem does not hold for singular distributions. For instance,
consider M = R2 with distribution

�(x,y) =

(

T(x,y)R2 if x > 0

span{ @
@x} if x  0

.

Let X = @
@x and Y = f @

@y , where f is defined by

f(x, y) =

(

0 if x  0

e�1/x2
if x > 0

.

Then � is generated by X and Y , so � is smooth. Note also that � is involutive since



@

@x
, f

@

@y

�

=
@f

@x

@

@y
=

(

0 if x  0
2
x3 e�1/x2 @

@y = 2
x3 f

@
@y if x > 0

.

But � is not integrable since we cannot find leaves through points on the y-axis.

We now specialize to Poisson manifolds.

Definition 2.12.14. Let (M,⇧) be a Poisson manifold. It has a characteristic distribution �
defined by

�x = ⇧]x(T
⇤
xM) = {Xf (x) : f 2 C1(M)}.

It is clear that � is a smooth distribution, generated by the set of hamiltonian vector fields.

39



Lemma 2.12.15. The characteristic distribution � of a Poisson manifold (M,⇧) is integrable.

Proof. By the Stefan-Sussmann theorem, it is enough to show that � is invariant with respect
to the family of hamiltonian vector fields. Choose f 2 C1(M) and let (�t) be the local flow of
the hamiltonian vector field Xf . By Remark 2.7.7, we know that Xf is a Poisson vector field,
and thus by Definition 2.7.5 we get that (�t) consists of Poisson di↵eomorphisms. Lemma 2.6.5
gives that

(dx�t) �⇧]x � (dx�t)⇤ = ⇧]�
t

(x). (2.13)

Note here that dx�t and (dx�t)⇤ are isomorphisms since �t is a di↵eomorphism. In particular,
(dx�t)⇤ is surjective, whence Equation (2.13) implies that

(dx�t)�x = ��
t

(x).

Hence, we find a singular foliation F that integrates the characteristic distribution �. If Fx

is the leaf containing x 2M , then

⇧]x(T
⇤
xM) = �x = TxFx. (2.14)

Hence, by Proposition 2.10.2 we get that Fx is a Poisson submanifold of (M,⇧), with uniquely
determined Poisson structure ⇧F

x

that is the restriction to Fx of the original Poisson structure
⇧. That is,

{f, g}(y) = {f |F
x

, g|F
x

}F
x

(y) for f, g 2 C1(M) and y 2 Fx.

Indeed, the inclusion i : Fx ,!M is a Poisson map, and thus

{f, g} � i = {f � i, g � i}F
x

.

Finally, since the inclusion i : Fx ,!M is Poisson, Lemma 2.6.5 implies that

⇧]y(↵) = (⇧F
x

)]y(↵ � dyi)

for y 2 Fx and ↵ 2 T ⇤
yM . Together with Equation (2.14), this gives that (⇧F

x

)]y(T ⇤
yFx) = TyFx.

That is, ⇧F
x

is of maximal rank and thus defines a symplectic structure on the leaf Fx.
We summarize:

Proposition 2.12.16. A Poisson manifold (M,⇧) is foliated into Poisson submanifolds, whose
tangent spaces are spanned by the hamiltonian vector fields of (M,⇧). The restriction of the
Poisson structure ⇧ to each of these submanifolds is symplectic. We call this decomposition F
the symplectic foliation of M , and the immersed submanifolds are the symplectic leaves of M .

The Poisson structure ⇧ is completely determined by the symplectic structures on the leaves
of F .

Proposition 2.12.17. Let ⇧1 and ⇧2 be two Poisson structures on a manifold M . Suppose that
both Poisson structures define the same foliation on M and that for every leaf L, the Poisson
(symplectic) structure induced on L by ⇧1 is the same as the Poisson (symplectic) structure
induced on L by ⇧2. Then ⇧1 and ⇧2 are equal.

Proof. Let {·, ·}1 and {·, ·}2 be the Poisson brackets corresponding to ⇧1 and ⇧2 respectively.
By assumption, they determine the same symplectic foliation on M . Let p 2 M and let L be
the leaf passing through p. Denote by i : L ,! M the inclusion map. It is assumed that the
induced Poisson structures {·, ·}1,L and {·, ·}2,L on L coincide, so that for all f, g 2 C1(M):

{f � i, g � i}1,L = {f � i, g � i}2,L.
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Since i is a Poisson map, both when M is equipped with ⇧1 and when M is equipped with ⇧2,
we have

{f, g}1(p) = {f, g}1(i(p)) = {f � i, g � i}1,L(p) = {f � i, g � i}2,L(p) = {f, g}2(i(p)) = {f, g}2(p).

This applies to any p 2M and all f, g 2 C1(M), so that {·, ·}1 = {·, ·}2.
Remark 2.12.18. In case ⇧ is a regular Poisson structure on M , we can readily argue for
the symplectic foliation of M as follows. Invoking Lemma 2.7.3, we see that the characteristic
distribution� of (M,⇧) is involutive. Using the Frobenius theorem, we find the desired foliation
F integrating �.

Example 2.12.19. Consider R2 with Poisson structure ⇧ = y @
@y ^ @

@x . Since

⇧](dx) = �y @
@y

and ⇧](dy) = y
@

@x
,

we obtain that the characteristic distribution � is given by

�(x,y) =

(

T(x,y)R2 if y 6= 0

{0} if y = 0
.

Hence, the symplectic leaves of (R2,⇧) are the open upper half plane, the open lower half plane
and all points on the x-axis.
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Chapter 3

Basic features of log-symplectic
structures

We will now introduce log-symplectic structures, which are the objects of study in this thesis.
Log-symplectic manifolds form a convenient class of Poisson manifolds that extends the class of
symplectic manifolds. Log-symplectic structures are however in many ways equally well-behaved
as honest symplectic structures, and many results from symplectic geometry can be extended to
the log-symplectic framework. This made log-symplectic structures a topic of intense research
in the Poisson community in the last couple of years.

This chapter is a compilation of basic results and examples taken from various sources. How-
ever, it also contains an important normal form result: we give a particularly neat coordinate
expression for a log-symplectic structure near a point of its singular locus.

3.1 Definition and examples

Recall that a symplectic structure on a manifold M2n corresponds to a non-degenerate Poisson
structure on M2n, that is, a Poisson bivector ⇧ whose top wedge power ⇧n is nowhere vanishing.
We will now relax this condition by allowing ⇧n to vanish linearly. This leads to the following
definition.

Definition 3.1.1. A Poisson structure ⇧ on a manifold M2n is called log-symplectic if the map

⇧n : M !
^2n

TM : x 7! ⇧n(x)

is transverse to the zero section of
V

2n TM . We call Z = (⇧n)�1(0) its singular locus.

Remark 3.1.2. Honest symplectic structures are also log-symplectic. Our interest goes out to
the bona fide or non-symplectic log-symplectic structures.

The transversality condition implies that the singular locus Z is a codimension-one subman-
fold of M . Indeed, we have that ⇧n(M) and M are 2n-dimensional submanifolds of

V

2n TM ,
and it is a well-known fact in di↵erential geometry that their transverse intersection ⇧n(M)\M
is a smooth submanifold of M , of dimension

dim
�

⇧n(M)
�

+ dim(M)� dim
⇣

^2n
TM

⌘

= 2n+ 2n� (2n+ 1) = 2n� 1.

Here we used that
V

2n TM is a vector bundle of rank 1 over M , whence its dimension is 2n+1.
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It is now apparent that log-symplectic structures (M,Z,⇧) are not far from being symplectic,
as they are symplectic on the open dense subset M \ Z of M . Moreover, their failure of being
symplectic everywhere is as well-behaved as one can ask, since the zeros of ⇧n are simple and
forced to lie in the hypersurface Z.

Remark 3.1.3. Given a Poisson manifold (M2n,⇧), we check if ⇧ is log-symplectic as follows:
Choose p 2 (⇧n)�1(0). Let (U, x1, . . . , x2n) be coordinates around p, so that on U

⇧n = g
@

@x1
^ · · · ^ @

@x2n
,

for some smooth function g 2 C1(U) vanishing at p. Through the choice of coordinates, we
obtain a local trivialization of

V

2n TM around p, on which the map ⇧n is given by

⇧n : U ! U ⇥ R : x 7! (x, g(x)).

Then ⇧n intersects the zero section transversely at p

, Im (dp⇧
n)� T(p,0)

�

U ⇥ {0}� = T(p,0)

�

U ⇥ R
�

, �

R2n ⇥ Im (dpg)
�� �

R2n ⇥ {0}� = R2n ⇥ R
, Im (dpg) = R
, dpg 6= 0

, g vanishes linearly at p.

Now assume that M is orientable. Let ⌦ be a volume form on M with dual 2n-vector field ⇠.
Since

V

2n TM is a line bundle, we can write

⇧n = f⇠,

for uniquely determined f 2 C1(M). Let p be a zero of ⇧n. As before, choosing coordinates
(U, x1, . . . , x2n) around p, we write

⇧n = g
@

@x1
^ · · · ^ @

@x2n
.

As
@

@x1
^ · · · ^ @

@x2n
= h⇠|U

for some non-vanishing function h 2 C1(U), we get on U that

⇧n = gh⇠|U = f |U⇠|U .

Since g vanishes at p, the Leibniz rule gives

dpf = h(p)dpg + g(p)dph = h(p)dpg,

where h(p) is nonzero. Keeping in mind the above discussion, we thus obtain that⇧n intersecting
the zero section transversely at p is equivalent with dpf being nonzero. Noting that

Z = (⇧n)�1 (0) = f�1(0),

we conclude:
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Corollary 3.1.4. Let (M2n,⇧) be an orientable Poisson manifold and assume that ⇧n = f⇠,
where ⇠ is the dual 2n-vector field of some volume form ⌦. Then (M2n,⇧) is log-symplectic if
and only if 0 is a regular value of f .

In case M is log-symplectic and orientable, this gives an alternative proof of the fact that
its singular locus Z is a codimension-one submanifold. Indeed, it is the preimage of a regular
value under a map f 2 C1(M).

The following example shows that the class of log-symplectic manifolds is strictly larger than
the class of symplectic manifolds.

Example 3.1.5 (Following [FM]). Consider the unit sphere S2 ⇢ R3, where R3 is endowed
with cylindrical coordinates (r, ✓, z). In these coordinates, S2 is described by r2 + z2 = 1, and
(✓, z) are the induced coordinates on S2. We now claim that ! := d✓ ^ dz is a well-defined,
non-degenerate di↵erential form on S2. Indeed, even though d✓ is ill-defined at the north and
south pole, d✓^dz extends smoothly over the poles. We will prove this for the north pole, using
Cartesian coordinates.
On the open upper hemisphere, we have z =

p

1� x2 � y2 and thus

dz = � x
p

1� x2 � y2
dx� y

p

1� x2 � y2
dy.

Using that ✓ = arctan(y/x), we get that

d✓ =
x

x2 + y2
dy � y

x2 + y2
dx.

Hence,

d✓ ^ dz =

✓

x

x2 + y2

◆

 

x
p

1� x2 � y2

!

dx ^ dy +

✓

y

x2 + y2

◆

 

y
p

1� x2 � y2

!

dx ^ dy

=
(x2 + y2)

(x2 + y2)
p

1� x2 � y2
dx ^ dy.

So the singularity at the north pole is removable, and d✓ ^ dz extends smoothly as
 

1
p

1� x2 � y2
dx ^ dy

!

�

�

�

�

�

(0,0)

= dx ^ dy|(0,0). (3.1)

One proceeds similarly around the south pole, using that z = �
p

1� x2 � y2. From equation
(3.1) and its analog around the south pole, it is clear that d✓^ dz is non-vanishing at the poles.
Away from the poles, it is obviously non-vanishing, whence ! = d✓ ^ dz is a non-degenerate
2-form on S2, as we claimed. Consequently, it has an inverse bivector field !�1. This allows us
to define a bivector ⇧ on S2 by

⇧ := �z!�1 = z
@

@✓
^ @

@z
.

Being a bivector on a surface, ⇧ is automatically Poisson (see Example 2.4.7). By Remark
3.1.3, it follows that ⇧ is a log-symplectic structure on S2.
Now consider the antipodal action of Z2 = {0, 1} on S2, that is:

1 · (✓, z) = (✓ + ⇡,�z).
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Note that ⇧ is invariant under this action. Indeed, defining � : (✓, z) 7! (✓ + ⇡,�z), we show
that �⇤⇧ = ⇧. Since the Jacobian matrix of � at any point is given by



1 0
0 �1

�

,

it follows that

�⇤
@

@✓
=

@

@✓
and �⇤

@

@z
= � @

@z
.

Noting that by definition, �⇤z = (��1)⇤z = �z, we get

�⇤

✓

z
@

@✓
^ @

@z

◆

= (�⇤z)

✓

�⇤
@

@✓

◆

^
✓

�⇤
@

@z

◆

= (�z) @
@✓
^
✓

� @

@z

◆

= z
@

@✓
^ @

@z
.

Consequently, ⇧ descends to a Poisson structure ⇧ on the orbit space S2/Z2
⇠= RP2. As the

projection S2 ! RP2 is a local di↵eomorphism (it is a covering map) and being log-symplectic
is a local property, it follows that ⇧ is a log-symplectic structure on RP2.
However, RP2 is not symplectic since it is not orientable. Thus RP2 is a bona fide log-symplectic
manifold.

The standard example of a log-symplectic structure is the following.

Example 3.1.6. Consider R2n with coordinates (x1, y1, . . . , xn, yn). The bivector ⇧ defined as

⇧ = y1
@

@x1
^ @

@y1
+

n
X

i=2

@

@xi
^ @

@yi
(3.2)

is a log-symplectic structure on R2n. Let us first check that ⇧ is Poisson (i.e. [⇧,⇧] = 0), using
the defining properties of the Schouten bracket (Theorem 2.2.2). We have

[⇧,⇧] =

"

y1
@

@x1
^ @

@y1
+

n
X

i=2

@

@xi
^ @

@yi
, y1

@

@x1
^ @

@y1
+

n
X

i=2

@

@xi
^ @

@yi

#

=



y1
@

@x1
^ @

@y1
, y1

@

@x1
^ @

@y1

�

+ 2

"

y1
@

@x1
^ @

@y1
,

n
X

i=2

@

@xi
^ @

@yi

#

+

"

n
X

i=2

@

@xi
^ @

@yi
,

n
X

i=2

@

@xi
^ @

@yi

#

.

The graded derivation property of [·, ·] reduces the last term to Lie brackets of coordinate vector
fields, which vanish. Application of the derivation property and Lemma 2.2.5 then gives

[⇧,⇧] =



y1
@

@x1
^ @

@y1
, y1

�

^ @

@x1
^ @

@y1
+ y1



y1
@

@x1
^ @

@y1
,
@

@x1
^ @

@y1

�

+ 2

"

n
X

i=2

@

@xi
^ @

@yi
, y1

@

@x1
^ @

@y1

#

= �◆dy1
✓

y1
@

@x1
^ @

@y1

◆

^ @

@x1
^ @

@y1
+ y1



@

@x1
^ @

@y1
, y1

@

@x1
^ @

@y1

�

+ 2

"

n
X

i=2

@

@xi
^ @

@yi
, y1

#

^ @

@x1
^ @

@y1
+ 2y1

"

n
X

i=2

@

@xi
^ @

@yi
,
@

@x1
^ @

@y1

#
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As before, the last term vanishes. So

[⇧,⇧] = y1
@

@x1
^ @

@x1
^ @

@y1
+ y1

✓

@

@x1
^ @

@y1
, y1

�

^ @

@x1
^ @

@y1
+ y1



@

@x1
^ @

@y1
,
@

@x1
^ @

@y1

�◆

� 2◆dy1

 

n
X

i=2

@

@xi
^ @

@yi

!

^ @

@x1
^ @

@y1

= �y1◆dy1
✓

@

@x1
^ @

@y1

◆

^ @

@x1
^ @

@y1
= y1

@

@x1
^ @

@x1
^ @

@y1
= 0.

Next, as

⇧n = n! y1
@

@x1
^ @

@y1
^ · · · ^ @

@xn
^ @

@yn
,

Remark 3.1.3 shows that ⇧n is transverse to the zero section. Hence ⇧ is indeed a log-symplectic
structure on R2n. Its singular locus is the hyperplane Z $ {y1 = 0}.

Example 3.1.6 is prototypical in the sense that every log-symplectic structure looks like that
near its singular locus. We will prove this in the next section.

3.2 Normal form

We will now prove that the expression (3.2) in Example 3.1.6 is a local normal form for log-
symplectic structures near their singular locus. The following lemma is stated in [GMP2],
without proof however.

Lemma 3.2.1. Let (M2n, Z,⇧) be a log-symplectic manifold. The rank of ⇧ at any point x 2 Z
equals 2n� 2.

Proof. Choose x 2 Z. Since ⇧n vanishes at x, we have that ⇧x is not of full rank 2n. By
skew-symmetry, its rank is even, whence at most 2n � 2. We will assume by contradic-
tion that rank(⇧x) = 2k < 2n � 2. By Weinstein’s splitting theorem, we find coordinates
(U, q1, p1, . . . , qk, pk, y1, . . . , yl) centered at x such that on U :

⇧ =
k
X

i=1

@

@qi
^ @

@pi
+

X

1i<jl

�i,j
@

@yi
^ @

@yj
,

where the functions �i,j vanish at x, and 2k + l = 2n. Hence by assumption, l is even with
l > 2. Now note that

⇧n = F
@

@q1
^ @

@p1
^ · · · ^ @

@qk
^ @

@pk
^ @

@y1
^ · · · ^ @

@yl
,

where F is a homogeneous polynomial of degree l/2 in the variables �i,j for 1  i < j  l.
Under the assumption that l > 2, we have that dxF = 0. Indeed, for convenience we rename
the variables �i,j as z1, . . . , zm where m = l(l � 1)/2, and then we have

F =
X

(i1,...,i
l/2)2I

ai1,...,i
l/2
zi1 · · · zi

l/2
,

for some index set I ⇢ {1, . . . ,m}l/2 and constants ai1,...,i
l/2
. Then

dxF =
X

(i1,...,i
l/2)2I

l/2
X

j=1

ai1,...,i
l/2
zi1(x) · · · zi

j�1(x)dxzijzij+1(x) · · · zi
l/2
(x) = 0,
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since all zk(x) are zero for k = 1, . . . ,m. So we run into a contradiction with the fact that ⇧n

is transverse to the zero section at x. This shows that rank(⇧x) = 2n� 2.

As announced before, we obtain the following coordinate expression for log-symplectic struc-
tures near their singular loci. This seems to be a well-known result [Cav] [GMP2], but a com-
plete proof is not given anywhere. The last change of coordinates we apply in the proof below
is suggested in [GMP2].

Theorem 3.2.2. Let (M2n, Z,⇧) be a log-symplectic manifold and let x 2 Z. Then there exist
coordinates (U, x1, y1, . . . , xn, yn) around x such that on U , the hypersurface Z is locally defined
by y1 = 0 and

⇧ = y1
@

@x1
^ @

@y1
+

n
X

i=2

@

@xi
^ @

@yi
. (3.3)

Proof. The splitting theorem and Lemma 3.2.1 give coordinates (V, q1, p1, . . . , qn�1, pn�1, y1, y2)
centered at x such that on V :

⇧ =
n�1
X

i=1

@

@qi
^ @

@pi
+ �(y1, y2)

@

@y1
^ @

@y2
,

where � vanishes at x. Even more is true: since ⇧ has rank 2n� 2 at points of Z and has full
rank elsewhere, we have that ��1(0) = Z \ V . That is, Z \ V is given by � = 0. Moreover,
as ⇧n is transverse to the zero section, we have that dx� 6= 0. Hence @�/@y1 or @�/@y2 must
be nonzero at x. Switching the roles of y1 and y2 if necessary, we can assume that @�/@y2 is
nonzero at x. Now consider the map

(q1, p1, . . . , qn�1, pn�1, y1, y2) 7!
�

eq1, ep1, . . . , gqn�1,]pn�1, ey1,�(y1, y2)
�

,

where eqi = qi and epi = pi for i = 1, . . . , n � 1 and ey1 = y1. This is a change of coordinates
around x: its Jacobian determinant is

det

2

4

I(2n�2)⇥(2n�2) 0(2n�2)⇥2

0 . . . 0 1 0

0 . . . 0 @�
@y1

@�
@y2

3

5 =
@�

@y2
,

which by continuity of @�/@y2 is nonzero on some smaller neighborhood U ⇢ V of x. So
(eq1, ep1, . . . , gqn�1,]pn�1, ey1,�) are coordinates on U . The coordinate vector fields transform cor-
respondingly:

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

@

@qi
=

@

@eqi
for i = 1, . . . , n� 1

@

@pi
=

@

@ epi
for i = 1, . . . , n� 1

@

@y1
=

@

@ ey1
+
@�

@y1

@

@�
@

@y2
=

@�

@y2

@

@�
.

Hence, in these new coordinates on U , ⇧ is given by

⇧ =
n�1
X

i=1

@

@eqi
^ @

@ epi
+ �

@�

@y2

@

@ ey1
^ @

@�
,
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where @�/@y2 is non-vanishing on U . At last, we change coordinates once more:

(eq1, ep1, . . . , gqn�1,]pn�1, ey1,�) 7! (eq1, ep1, . . . , gqn�1,]pn�1, ⇠, e�),

where e� = � and

⇠ :=

Z

1
@�
@y2

d ey1.

These are indeed new coordinates on U , since

det

2

6

6

4

@⇠

@ ey1

@⇠

@�
@e�

@ ey1

@e�

@�

3

7

7

5

= det

2

6

6

4

1
@�
@y2

@⇠

@�

@�

@y1
� @�

@y1

@�

@�
1

3

7

7

5

= det

2

4

1
@�
@y2

@⇠

@�

0 1

3

5 =
1
@�
@y2

is non-vanishing on U . The coordinate vector fields transform as

8

>

>

>

<

>

>

>

:

@

@ ey1
=

1
@�
@y2

@

@⇠

@

@�
=
@⇠

@�

@

@⇠
+

@

@e�

.

Note that @/@eqi has the same meaning in both coordinate systems, and the same holds for
@/@ epi. In the coordinates (U, eq1, ep1, . . . , gqn�1,]pn�1, ⇠, e�), we get

⇧ =
n�1
X

i=1

@

@eqi
^ @

@ epi
+ e�

@

@⇠
^ @

@e�
,

which is of the desired form (3.3). Since e� is a local defining function for Z on U , this concludes
the proof.

This normal form theorem has some interesting consequences [GMP1] [GMP2].

Corollary 3.2.3. If (M2n, Z,⇧) is a log-symplectic manifold, then Z is a Poisson submanifold
of M and the induced Poisson structure on Z is regular of corank one.

Proof. Let p 2 Z and choose coordinates (U, x1, y1, . . . , xn, yn) around p as in Theorem 3.2.2.
So U \ Z is given by y1 = 0, and

⇧|U = y1
@

@x1
^ @

@y1
+

n
X

i=2

@

@xi
^ @

@yi
.

In particular,

⇧p =
n
X

i=2

@

@xi

�

�

�

�

p

^ @

@yi

�

�

�

�

p

2 ^2TpZ. (3.4)

This shows that Z is a Poisson submanifold of M . It is clear that the restriction of ⇧ to Z has
rank 2n � 2 at all points. This follows immediately from Lemma 3.2.1, but it is also apparent
from the expression (3.4).
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Remark 3.2.4. Away from Z $ {y1 = 0}, one can invert the bivector

⇧ = y1
@

@x1
^ @

@y1
+

n
X

i=2

@

@xi
^ @

@yi

to obtain the di↵erential form

! = dx1 ^ d log |y1|+
n
X

i=2

dxi ^ dyi.

This justifies the terminology “log-symplectic”: ! acquires a logarithmic singularity along the
singular locus Z of ⇧.

By Corollary 3.2.3, a log-symplectic structure on M gives for free a corank-one Poisson man-
ifold Z with corresponding codimension one symplectic foliation. The following lemma shows
another way of constructing corank-one Poisson structures out of log-symplectic structures. It
is mentioned in the introduction of [MO2].

Lemma 3.2.5. Let (M2n, Z,⇧) be a log-symplectic manifold. Let X be a Poisson vector field
on M that is transverse to the symplectic leaves of Z. Then e⇧ := ⇧ +X ^ @

@✓ is a corank-one
Poisson structure on M ⇥ S1.

Proof. We first check that e⇧ is Poisson. We have

h

e⇧, e⇧
i

= [⇧,⇧] + 2



⇧, X ^ @

@✓

�

+



X ^ @

@✓
, X ^ @

@✓

�

= 2



⇧, X ^ @

@✓

�

+



X ^ @

@✓
, X ^ @

@✓

�

= 2 [⇧, X] ^ @

@✓
� 2X ^



⇧,
@

@✓

�

+



X ^ @

@✓
, X

�

^ @

@✓
�X ^



X ^ @

@✓
,
@

@✓

�

= �2(£X⇧) ^ @

@✓
+ 2X ^ (£

@

@✓

⇧)�
✓

£X

✓

X ^ @

@✓

◆◆

^ @

@✓
+X ^

✓

£
@

@✓

✓

X ^ @

@✓

◆◆

= �(£XX) ^ @

@✓
^ @

@✓
�X ^

✓

£X
@

@✓

◆

^ @

@✓
+X ^

⇣

£
@

@✓

X
⌘

^ @

@✓
+X ^X ^

✓

£
@

@✓

@

@✓

◆

= 0,

where we used that £X⇧ = 0 and that ⇧ nor X depend on ✓. To argue that e⇧ is regular of
corank-one, we note that

e⇧
n
= ⇧n + n⇧n�1 ^X ^ @

@✓
.

On (M \ Z)⇥ S1, the first term does not vanish. Since X is transverse to the leaves of Z, the
second term does not vanish on Z ⇥ S1. As the terms cannot cancel each other, it follows that
e⇧

n
is nowhere vanishing, which implies that the rank of e⇧ is 2n.

This lemma is useful in practice because log-symplectic structures (M,Z,⇧) have a conve-
nient class of transverse Poisson vector fields. Indeed, in the next chapter we will show that
modular vector fields on (M,⇧) are transverse to the symplectic leaves of Z.

Example 3.2.6 ([GMP2]). Let (N2n+1,⇧) be a regular corank-one Poisson manifold, X a
Poisson vector field on N and f : S1 ! R a smooth function. The bivector field

e⇧ = f(✓)
@

@✓
^X +⇧ (3.5)
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is a log-symplectic structure on S1 ⇥N , provided that the function f vanishes linearly and the
vector field X is transverse to the symplectic leaves of N . Indeed, computations similar to those
in the proof of Lemma 3.2.5 show that e⇧ is a Poisson structure. Moreover, we have

e⇧
n+1

= ⇧n+1 + (n+ 1)f(✓)
@

@✓
^X ^⇧n = (n+ 1)f(✓)

@

@✓
^X ^⇧n,

since ⇧n+1 is a (2n+ 2)-vector field on the (2n+ 1)-dimensional manifold N hence necessarily
zero. Since ⇧ is of rank 2n, we have that ⇧n is non-vanishing and since X is transverse to the
leaves of N , then also X ^ ⇧n is non-vanishing. This can be seen, for instance, by choosing
splitting coordinates for ⇧. Consequently, @

@✓ ^X ^⇧n is non-vanishing on S1⇥N and the fact

that f vanishes linearly implies that (S1 ⇥ N, e⇧) is log-symplectic. Its singular locus consists
of as many copies of N as f has zeros.

This example is interesting because a slight adaptation of it provides the semilocal model
for an orientable log-symplectic structure in a neighborhood of the exceptional hypersurface Z.
Indeed, let us replace S1 by an interval (�✏, ✏) with coordinate t and take for f : (�✏, ✏)! R :
t 7! t the identity function. Consider the corank-one Poisson structure (Z,⇧Z) induced by an
orientable log-symplectic structure (M,Z,⇧), and let X be the restriction to Z of a modular
vector field on M . Then the expression (3.5) becomes

⇧ = t
@

@t
^X +⇧Z ,

which is exactly the normal form for ⇧ near Z that we will derive later (see Theorem 5.2.1).
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Chapter 4

b-Geometry

Log-symplectic structures are described conveniently in the language of b-geometry. Here “b”
stands for boundary and refers to the calculus developed by Melrose for di↵erential operators on
manifolds with boundary [Mel]. This formalism can easily be adapted to the case of a manifold
with a distinguished hypersurface, examples of which are log-symplectic manifolds.

In this chapter, we introduce the b-category and its main concepts. As it turns out, log-
symplectic structures can be regarded as “symplectic” structures in the b-category. This point of
view allows us to apply symplectic techniques in the study of log-symplectic structures, leading
to extensions of theorems in symplectic geometry to the log-symplectic setting. All these results
put log-symplectic structures closer to the symplectic world than to the usually cumbersome
Poisson world. This chapter roughly follows [GMP2], complemented by the first three sections
of [MO]. Note however that in [GMP2], one works under orientability conditions that we will
not impose.

4.1 b-manifolds and b-di↵erential forms

We will first define b-manifolds and b-maps, which are respectively the objects and the mor-
phisms of the b-category. Next, we introduce the b-tangent and b-cotangent bundle, and the
notion of di↵erential forms on b-manifolds.

4.1.1 b-manifolds

Definition 4.1.1. A b-manifold is a pair (M,Z) consisting of a manifold M and a hypersurface
Z ⇢ M . A b-map f : (M1, Z1) ! (M2, Z2) is a smooth map between manifolds f : M1 ! M2

such that f�1(Z2) = Z1 and f is transverse to Z2. That is

Im(dpf) + Tf(p)Z2 = Tf(p)M2 for all p 2 Z1.

For our purposes, the example to keep in mind here is that of a log-symplectic manifold M
with its singular locus Z ⇢ M . In [GMP2], one only considers b-manifolds (M,Z) for which
both M and Z are orientable, so that one can assume that Z is defined by the vanishing of a
smooth function (See Lemma 4.1.2) that is defined in a neighborhood of Z. However, since log-
symplectic manifolds need not be orientable (see Example 3.1.5), this restriction is too stringent
for us.

Lemma 4.1.2. Let M be an orientable manifold and Z ⇢ M a hypersurface. Then Z is
orientable if and only if there exists a b-map f : (U 0, Z) ! (R, {0}), where U 0 is a tubular
neighborhood of Z.
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Proof. First assume that Z is orientable. We are asked to find a tubular neighborhood U 0 of
Z and a smooth map f : U 0 ! R such that f�1(0) = Z and dpf 6= 0 for all p 2 Z. Equip M
with a Riemannian metric. Consider the normal bundle of Z in M , consisting of the orthogonal
complements of the tangent spaces TpZ ⇢ TpM :

TZ? := {(p, v) : p 2 Z, v 2 (TpZ)? ⇢ TpM}.
We define the normal exponential map exp? by restricting the exponential map to the normal
bundle:

exp? : U ⇢ TZ? !M : (p, v) 7! expp(v),

where U is an open neighborhood of the zero section Z ⇢ TZ?. Note that at (p, 0p) 2 TZ?,
the derivative d(p,0

p

) exp
? : TpZ ⇥ TpZ? ! TpM is an isomorphism. Indeed, working in a local

trivialization V ⇥ R near p, let (z, w) 2 TpZ ⇥ R. Consider the curve t 7! (�(t), wt) in V ⇥ R,
where � is a curve in V passing through p at time t = 0 with tangent vector z. By the chain
rule, we have

d

dt

�

�

�

�

t=0

exp?(�(t), wt) =
d

dt

�

�

�

�

t=0

exp�(t)(wt) =
d

dx

�

�

�

�

x=0

exp�(x)(0) +
d

dy

�

�

�

�

y=0

exp�(0)(wy)

=
d

dx

�

�

�

�

x=0

�(x) +
d

dy

�

�

�

�

y=0

expp(wy) = z + w,

where we used that expq(0) = q and (d expq)0 = IdT
q

M for q 2M . Hence, we have that

d(p,0
p

) exp
? : TpZ ⇥ TpZ

? ! TpM : (z, w) 7! z + w.

Counting dimensions, it is enough to show that this map is injective. But injectivity is clear since
TpM = TpZ�TpZ?. By the inverse function theorem, we find a neighborhood V 0 ⇢ TZ? of the
zero section and a neighborhood U 0 ⇢ M of Z such that exp? : V 0 ! U 0 is a di↵eomorphism.
Note that exp? takes the zero section of TZ? to Z. Now, since M and Z are orientable, the
normal bundle is trivial: TZ? ⇠= Z ⇥ R. Denote by ⇡2 : Z ⇥ R! R the projection. We define
f : U 0 ! R by f := ⇡2 � (exp?)�1. Then f is a submersion, being a composition of submersions,
and thus dpf 6= 0 for all p 2 Z. Moreover, f�1(0) = exp?(Z ⇥ {0}) = Z.
Conversely, assume we have a b-map f : (U 0, Z) ! (R, {0}). Note that dpf 6= 0 for all p 2 Z,
and that (df)|Z vanishes on vector fields tangent to Z. Indeed, if Xp 2 TpZ then we have

(dpf) (Xp) =
�

dp(f |Z)
�

(Xp) = 0

as f |Z = 0. Hence df |Z trivializes the conormal bundle of Z in M . Dualizing, we get that
the normal bundle of Z in M is trivial as well, which along with the fact that M is orientable
implies orientability of Z.

Remark 4.1.3. In the proof of the “only if” implication of Lemma 4.1.2, we could have taken
a shortcut by applying the Tubular Neighborhood Theorem 1.3.8, which ensures that a neigh-
borhood of the zero section in TZ? is di↵eomorphic to a neighborhood of Z through a di↵eo-
morphism taking the zero section to Z. However, since the proof of the Tubular Neighborhood
Theorem is omitted, it seemed interesting to construct such a di↵eomorphism explicitly for
once.

In Lemma 4.1.2, we only managed to find a defining function for Z in a tubular neighborhood
of Z. Extending this function to a global defining function on M is a rather delicate issue in
general. For instance, consider the b-manifold (S1, {p}) where p 2 S1 is a point. Then it is
not possible to find a smooth function on S1 that vanishes linearly at p and is non-vanishing
elsewhere. Luckily, for log-symplectic manifolds the situation is a lot easier, as the next remark
shows.
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Remark 4.1.4. Let (M,Z,⇧) be a log-symplectic manifold. When M is orientable, a defining
function for Z exists automatically by Corollary 3.1.4. This need not be the case when M is not
orientable. For consider the b-manifold (RP2,RP1), which is log-symplectic by Example 3.1.5;
then there exists no function f : RP2 ! R for which 0 is a regular value and f�1(0) = RP1.
First note that RP2 \RP1 is connected. Indeed, assume that RP2 \RP1 = U [V is a separation
and denote by � : S2 ! RP2 the quotient map that identifies antipodal points. Since � is
continuous for the quotient topology on RP2, we get that ��1(U) and ��1(V ) are disjoint open
subsets of S2, with S2 \S1 = ��1(U)[��1(V ). Intersecting ��1(U) and ��1(V ) with the open
upper hemisphere S2

+ would give a separation of S2
+, if both ��1(U) \ S2

+ and ��1(V ) \ S2
+

were nonempty. Since S2
+ is connected, it follows that we may assume that ��1(V ) ⇢ S2

�. The
same argument applied to S2

� then yields that ��1(U) = S2
+ and ��1(V ) = S2

�. But then for
x 2 ��1(U), we have that its antipodal point �x 2 ��1(V ). Hence �(x) = �(�x) 2 U \ V ,
which contradicts that U and V separate RP2 \ RP1.
Now assume that f : RP2 ! R is a smooth function with f�1(0) = RP1. Since RP2 \ RP1 is
connected, and f is never zero on it, f must have constant sign on RP2 \ RP1. Replacing f by
�f if necessary, we can assume that f > 0 on RP2 \ RP1. But then 0 is a global minimum of
f , which implies that the derivative of f must vanish at all points of RP1. In particular, every
point of RP1 is a singular point of f , and 0 is not a regular value of f .

4.1.2 b-tangent and b-cotangent bundles

Definition 4.1.5. Let (M,Z) be a b-manifold. A b-vector field on (M,Z) is a vector field on
M which is tangent to Z at each point p 2 Z. We denote the set of b-vector fields by bX(M).

Example 4.1.6. Let (M,Z,⇧) be a log-symplectic manifold. Since Z ⇢ M is a Poisson
submanifold, every hamiltonian vector field onM is tangent to Z at points p 2 Z. Consequently,
hamiltonian vector fields on M are b-vector fields on (M,Z).

Note that a vector field X 2 X(M) is a b-vector field on (M,Z) if and only if around every
p 2 Z, one can find adapted coordinates (U, x1, . . . , xn) such that Z \ U is defined by x1 = 0
and

X|U = f1x1
@

@x1
+ f2

@

@x2
+ · · ·+ fn

@

@xn

for unique smooth functions f1, . . . , fn 2 C1(U). So the set of b-vector fields is a locally free
C1(M)-module, with local bases

⇢

x1
@

@x1
,
@

@x2
, . . . ,

@

@xn

�

near Z $ {x1 = 0}.
⇢

@

@x1
, . . . ,

@

@xn

�

away from Z.

Recall that the Serre-Swan Theorem asserts that the category of smooth vector bundles over M
is equivalent with the category of locally free C1(M)-modules of finite rank [Tay, Proposition
7.6.5]. We use the following light version.

Theorem 4.1.7 (Serre-Swan). Let M be a smooth manifold. There is a 1 : 1 correspondence
between smooth vector bundles over M and locally free C1(M)-modules of finite rank.

Proof. Suppose ⇧ : E ! M is a vector bundle of rank k. Cover M in opens {Ui}i2I that
constitute local trivializations of E, and assign to each open Ui the C1(Ui)-module M|U

i

consisting of sections Ui ! E. The modules M|U
i

are free: through local trivialization, sections
Ui ! Ui⇥Rk compose with the first projection to give the identity map on Ui. Hence a section

55



Ui ! Ui ⇥ Rk corresponds with a function Ui ! Rk, and the latter is just a list of k functions
Ui ! R. Hence M|U

i

⇠= C1(Ui)k, and M is a locally free C1(M)-module of rank k.
Conversely, let M be a locally free C1(M)-module of rank k. For x 2M , define

Fx :=
M|U

x

IxM|U
x

,

where Ix is the ideal of functions that vanish at x and that are defined on a neighborhood Ux of
x so that M|U

x

is free. Then Fx is a k-dimensional vector space: if {m1, . . . ,mk} is a basis for
M|U

x

over C1(Ux), then {m1, . . . ,mk} is an R-basis for Fx. Let us first check linear indepen-
dence. Assume r1m1 + · · ·+ rkmk = 0 for some r1, . . . , rk 2 R. Then r1m1 + · · ·+ rkmk = 0 in
Fx, which implies that r1m1+· · ·+rkmk 2 IxM|U

x

. Hence r1m1+· · ·+rkmk = f1⇠1+· · ·+fm⇠m
for some fj 2 Ix and ⇠j 2M|U

x

. Expressing the ⇠j in terms of m1, . . . ,mk gives that

r1m1 + · · ·+ rkmk = g1m1 + · · ·+ gkmk,

for some gi 2 C1(Ux) with gi(x) = 0. But then (g1 � r1)m1 + · · ·+ (gk � rk)mk = 0, and since
{m1, . . . ,mk} is free over C1(Ux), this implies that gi = ri on Ux. In particular, gi(x) = 0 = ri.
This shows that {m1, . . . ,mk} is an R-linearly independent set. Next, {m1, . . . ,mk} generates
Fx over R since

f1m1 + · · ·+ fkmk = f1(x)m1 + · · ·+ fk(x)mk = f1(x)m1 + · · ·+ fk(x)mk,

as the functions fi � fi(x) vanish at x. Put E := [x2MFx and let ⇧ : E ! M be defined by
⇧(Fx) = x. If U ⇢M is open so that M|U is free (with basis {m1, . . . ,mk}), then we have an
isomorphism �U : M|U ! C1(U)k : f1m1+ · · ·+fkmk 7! (f1, . . . , fk). This gives rise to a map

 U : E|U ! U ⇥ Rk : m 2 Fx 7!
�

x,�U (m)(x)
�

,

which is bijective and an isomorphism in the fibers Fx ! {x} ⇥ Rk. Indeed, the map ( U )|F
x

is clearly linear, and it is well-defined and injective since

m = m0 , m�m0 2 IxM|U , �U (m�m0)(x) = 0.

By dimension reasons,  U is a fiberwise isomorphism. Moreover, if U \ V 6= ;, then we have

 U �  �1
V : (U \ V )⇥ Rk ! (U \ V )⇥ Rk : (x, v) 7! �

x,
�

�U � ��1
V

�

(x)(v)
�

,

where we consider �U ���1
V as an invertible (k⇥k) matrix with entries in C1(U \V ). It is well-

known that the data now obtained determine a smooth vector bundle structure on ⇧ : E !M
[Lee, Lemma 10.6]. Moreover, M ⇠= �(E) as locally free C1(M)-modules, for if M|U is free
on basis {m1, . . . ,mk} and f = (f1, . . . , fk) : U ! Rk is a local section of E, then we have an
isomorphism

�(E)|U !M|U : f 7! f1m1 + · · ·+ fkmk.

So there exists a unique vector bundle over M whose sections are the b-vector fields.

Definition 4.1.8. Let (M,Z) be a b-manifold. The b-tangent bundle bTM is the vector bundle
whose sections are the b-vector fields on (M,Z).
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Note that

bTpM =

8

<

:

TpZ �
⌧

⇣

x1
@
@x1

⌘

�

�

�

p

�

if p 2 Z $ {x1 = 0}
TpM if p /2 Z

, (4.1)

where it is worth noting that x1
@
@x1

is nowhere vanishing as a b-vector field, whereas it vanishes
at points of Z when considered as a vector field.

We now show that the b-tangent bundle bTM has a natural Lie algebroid structure. Recall
that a Lie algebroid over M is a triple (A, [·, ·]A, ⇢A), where A ! M is a vector bundle,
⇢A : A! TM is a bundle map and

�

�(A), [·, ·]A
�

is a Lie algebra, such that

[a, fb]A = £⇢A(a)f · b+ f · [a, b]A, (4.2)

for a, b 2 �(A) and f 2 C1(M). The map ⇢A is called the anchor.

Lemma 4.1.9 ([Lee]). Let Mn be a manifold and Z ⇢ M a k-dimensional submanifold. If
V,W 2 X(M) are tangent to Z, then the same holds for their Lie bracket [V,W ].

Proof. Let i : Z ,!M denote the inclusion. We first show that there exist smooth vector fields
V ,W on Z such that V is i-related with V and W is i-related with W . The fact that V is
tangent to Z means that Vp lies in the image of dpi for each p 2 Z. Thus for each p 2 Z, there
exists a vector V p 2 TpZ such that dpi

�

V p
�

= Vp. Since dpi is injective, this vector V p is even
unique. It remains to show that V is smooth. Choose adapted coordinates around p 2 Z so
that locally Z is given by xk+1 = · · · = xn = 0. If V =

Pn
i=1 fi

@
@x

i

in these coordinates, then by

construction V =
Pk

i=1 fi
@
@x

i

, which is clearly smooth. We proceed similarly to construct W .

Lemma 8.3.2 in the appendix now implies that [V,W ] and [V ,W ] are i-related. This implies
that [V,W ] is tangent to Z.

We now define a Lie algebroid structure on bTM as follows. Since the inclusion map
bX(M) ,! X(M) is C1(M)-linear, it comes from a vector bundle map ⇢ : bTM ! TM ,
which we define to be the anchor of bTM . Next, by the above lemma, we can restrict the
Lie bracket on X(M) to bX(M) = �(bTM). The identity (4.2) follows automatically from the
defining properties of the Lie bracket (see for instance [Lee, Proposition 8.28]).

We can reinterpret the observation 4.1 in terms of the anchor map ⇢ : bTM ! TM . Over
M \ Z, the map ⇢ is the identity map. Restricting ⇢ to Z gives a bundle epimorphism

 : bTM |Z ! TZ, (4.3)

in the fiber above p 2 Z $ {x1 = 0} given by

bTpM ! TpZ : a1

✓

x1
@

@x1

◆

�

�

�

�

p

+a2
@

@x2

�

�

�

�

p

+ · · ·+an
@

@xn

�

�

�

�

p

7! a2
@

@x2

�

�

�

�

p

+ · · ·+an
@

@xn

�

�

�

�

p

. (4.4)

A priori, it may seem that the definition of this map depends on the chosen coordinates, but
the proof of the lemma below shows that this is not the case. For suppose (x1, . . . , xn) and
(y1, . . . , yn) are both coordinate systems around p 2 Z such that x1 and y1 are defining functions
for Z. Assume that

a1

✓

x1
@

@x1

◆

�

�

�

�

p

+ a2
@

@x2

�

�

�

�

p

+ · · ·+ an
@

@xn

�

�

�

�

p

= b1

✓

y1
@

@y1

◆

�

�

�

�

p

+ b2
@

@y2

�

�

�

�

p

+ · · ·+ bn
@

@yn

�

�

�

�

p

.

The argument below shows that
✓

x1
@

@x1

◆

�

�

�

�

p

=

✓

y1
@

@y1

◆

�

�

�

�

p

,
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and then a1 = b1 by 4.1. Hence we get

a2
@

@x2

�

�

�

�

p

+ · · ·+ an
@

@xn

�

�

�

�

p

= b2
@

@y2

�

�

�

�

p

+ · · ·+ bn
@

@yn

�

�

�

�

p

.

Lemma 4.1.10. The kernel of the map (4.3) is a line bundle LZ with canonical non-vanishing
section.

Proof. From the expression (4.4), it is clear that the map (4.3) has a one dimensional kernel at

each point p 2 Z, which is spanned by
⇣

x1
@
@x1

⌘

�

�

�

p
if Z is locally given by x1 = 0 in adapted

coordinates. In particular, the map (4.3) is of constant corank equal to 1, which implies that its
kernel is a line subbundle of bTM [Lee, Theorem 10.34]. We now show that the b-vector field
x1

@
@x1

(where Z $ {x1 = 0}) at points of Z is independent of choice of coordinates. So assume
(x1, . . . , xn) and (y1, . . . , yn) are coordinate systems around p 2 Z so that both x1 and y1 are
locally defining functions for Z. Then we must have that y1 = hx1 for some non-vanishing
function h defined near p. This implies that

@

@x1
=
@(hx1)

@x1

@

@y1
+

n
X

j=2

@yj
@x1

@

@yj
=

✓

@h

@x1

1

h

◆

y1
@

@y1
+ h

@

@y1
+

n
X

j=2

@yj
@x1

@

@yj
,

hence
✓

x1
@

@x1

◆

�

�

�

�

p

=

✓

@h

@x1

1

h
x1

◆

�

�

�

�

p

✓

y1
@

@y1

◆

�

�

�

�

p

+

✓

y1
@

@y1

◆

�

�

�

�

p

+
n
X

j=2

✓

x1
@yj
@x1

◆

�

�

�

�

p

@

@yj

�

�

�

�

p

=

✓

y1
@

@y1

◆

�

�

�

�

p

.

It follows that we can construct a global canonical trivialization ⇠ of LZ , which is locally given
by x1

@
@x1

in any adapted chart (x1, . . . , xn) which expresses Z locally as x1 = 0.

Definition 4.1.11. This non-vanishing section ⇠ of LZ is the normal b-vector field of (M,Z).

Remark 4.1.12. In a coordinate-free way, the normal b-vector field ⇠ is locally given by (fv)|Z ,
where f is locally defining for Z and v is a vector field such that df(v) = 1. It is not hard to
see that this indeed defines a non-vanishing section of LZ and computations similar to those in
previous lemma show that the definition is independent of the choice of f and v.

Definition 4.1.13. The b-cotangent bundle of (M,Z) is the vector bundle bT ⇤M dual to bTM .

Note that, at points p 2 M \ Z, we have that bT ⇤
pM = (bTpM)⇤ = (TpM)⇤ = T ⇤

pM is the

ordinary cotangent space. At points p 2 Z, the map  p : bTpM ! TpZ from (4.3) is surjective.
Hence its dual map  ⇤

p : T ⇤
pZ ! bT ⇤

pM is injective. The image of  ⇤
p is

h⇠pi0 := {↵ 2 bT ⇤
pM : ↵(⇠p) = 0}.

Indeed, let � 2 T ⇤
pZ. Then  ⇤

p(�)(⇠p) = �( p(⇠p)) = 0 since ⇠p 2 Ker( p), which shows that
Im( ⇤

p) ⇢ h⇠pi0. Since  ⇤
p is injective, we have that dim(Im( ⇤

p)) = dim(T ⇤
pZ) = dim(h⇠pi0) and

thus
T ⇤
pZ ⇠= Im( ⇤

p) = h⇠pi0. (4.5)

Next, let (x1, . . . , xn) be coordinates around p so that Z is locally defined by x1 = 0. Away from
Z, we have a well-defined one form dx1

x1
. Its pairing with any b-vector field extends smoothly

over Z, since
⌧

f1x1
@

@x1
+ f2

@

@x2
+ · · ·+ fn

@

@x2
,
dx1
x1

�

= f1.
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It follows that dx1
x1

has a smooth extension over Z $ {x1 = 0} as a section of bT ⇤M , which

we will still denote by dx1
x1

by slight abuse of notation. Moreover, as
⇣

dx1
x1

⌘

p
(⇠p) = 1, we have

⇣

dx1
x1

⌘

p
/2 h⇠pi0 and hence we conclude

bT ⇤
pM =

8

<

:

T ⇤
pZ �

⌧

⇣

dx1
x1

⌘

p

�

if p 2 Z $ {x1 = 0}
T ⇤
pM if p /2 Z

. (4.6)

4.1.3 b-di↵erential forms

Decompositions and the b-de Rham di↵erential

Definition 4.1.14. Let (M,Z) be a b-manifold. For each k 2 N, we denote by b⌦k(M) the
space of b-de Rham k-forms, which are the sections of the vector bundle ^k(bT ⇤M).

We can view di↵erential forms on M as b-forms on (M,Z) by pulling them back under the
anchor map. Indeed, first note that ⇢ : bTM ! TM is an isomorphism on M \ Z, hence so is
its dual map ⇢⇤ : T ⇤M ! bT ⇤M . Then also the induced map ⇢⇤ : ^k(T ⇤M)! ^k(bT ⇤M) is an
isomorphism on M \Z, and since this set is dense in M , it follows that on the level of sections,
the map ⇢⇤ : ⌦k(M)! b⌦k(M) is injective. Concretely, given µ 2 ⌦k(M), we interpret it as an
element of b⌦k(M) by the rules

(

µp 2
Vk(T ⇤

pM) =
Vk(bT ⇤

pM) at p 2M \ Z
µp = (i⇤µ)p 2

Vk(T ⇤
pZ) ⇢ Vk(bT ⇤

pM) at p 2 Z
, (4.7)

where i : Z ,!M is the inclusion map.

Typically, b-di↵erential forms on (M,Z) explode near Z. Those that vanish at Z are in fact
honest de Rham forms.

Lemma 4.1.15. Let (M,Z) be a b-manifold and ! 2 b⌦k(M) a b-de Rham k-form. If !|Z = 0,
then ! 2 ⌦k(M).

Proof. Choose coordinates (x1, . . . , xn) around p 2 Z so that Z is locally given by x1 = 0. In
these coordinates, we write

! =
X

1<i2<···<i
k

n

fi2,...,i
k

dx1
x1
^ dxi2 ^ · · · ^ dxi

k

+
X

1<i1<···<i
k

n

gi1,...,i
k

dxi1 ^ · · · ^ dxi
k

.

Since ! vanishes on Z, the same must hold for the functions fi2,...,i
k

and gi1,...,i
k

. In particular,
we find functions hi2,...,i

k

defined near p so that fi2,...,i
k

= x1hi2,...,i
k

. It follows that away from
Z, we can write

! =
X

1<i2<···<i
k

n

x1hi2,...,i
k

dx1
x1
^ dxi2 ^ · · · ^ dxi

k

+
X

1<i1<···<i
k

n

gi1,...,i
k

dxi1 ^ · · · ^ dxi
k

=
X

1<i2<···<i
k

n

hi2,...,i
k

dx1 ^ dxi2 ^ · · · ^ dxi
k

+
X

1<i1<···<i
k

n

gi1,...,i
k

dxi1 ^ · · · ^ dxi
k

,

which extends smoothly over Z as a de Rham k-form whose pullback to Z vanishes.
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We now describe a suitable decomposition of b-forms. Fix a tubular neighborhood p : E ! Z
of Z and choose a metric g on E with corresponding distance function x 7! kxk. Construct a
function � : M \ Z ! (0,1) satisfying �(x) = kxk for x 2 E with kxk  1/2, and � ⌘ 1 on
M \ {x 2 E : kxk < 1}. For details on this construction, see the appendix. We now claim:

Lemma 4.1.16. Let (M,Z) be a b-manifold and ! 2 b⌦k(M) a b-form. We can decompose

! = ↵+ d log(�) ^ p⇤(✓), (4.8)

for some ✓ 2 ⌦k�1(Z) and ↵ 2 ⌦k(M).

Proof. Let us first show that the di↵erential form d log(�) on M \ Z extends smoothly over Z
as a b-form. Consider a local trivialization  : p�1(U)! U ⇥R of NZ with coordinate t in the
fibers, and let (x1, . . . , xn�1) be coordinates on U ⇢ Z. Close enough to Z, we then have

�(x1, . . . , xn�1, t) =
q

g
�

t ·  �1(x1, . . . , xn�1, 1), t ·  �1(x1, . . . , xn�1, 1)
�

= |t|
q

g
�

 �1(x1, . . . , xn�1, 1), �1(x1, . . . , xn�1, 1)
�

:= |t|h(x1, . . . , xn�1), (4.9)

where h is smooth and strictly positive since g is positive definite. Hence

d log(�) = d log(|t|) + d log(h) =
dt

t
+ d log(h), (4.10)

and we already argued above that dt/t extends over Z as a b-form. Hence the same holds
for d log(�). Now, in the coordinates (x1, . . . , xn�1, t), any b-form can be written as a smooth
combination of dt/t, dx1, . . . , dxn�1. Hence by the relation (4.10), b-forms can equally well be
written as combinations of d log(�), dx1, . . . , dxn�1. It follows that around any p 2 Z, we can
find a neighborhood V so that !|V can be written as

!|V = ↵V ^ d log(�)|V + �V ,

for some ↵V 2 ⌦k�1(V ) and �V 2 ⌦k(V ). Using a partition of unity subordinate to these opens,
we obtain an open neighborhood O ⇢ E of Z and ↵ 2 ⌦k�1(O),� 2 ⌦k(O) so that

!|O = ↵ ^ d log(�)|O + �. (4.11)

Now consider the open cover {O,M \Z} of M and let {�, �} be a partition of unity subordinate
to this cover. Note that � is supported inside O, and that �|Z ⌘ 1. Consider the globally
defined b-form

! � p⇤(↵|Z) ^ d log(�)� �p⇤(�|Z)
and note that

⇥

! � p⇤(↵|Z) ^ d log(�)� �p⇤(�|Z)
⇤|Z = !|Z � (p|Z)⇤(↵|Z) ^ d log(�)|Z � �|Z(p|Z)⇤(�|Z)

= !|Z � ↵|Z ^ d log(�)|Z � �|Z
= 0

by equation (4.11). By Lemma 4.1.15, we conclude that !� p⇤(↵|Z)^ d log(�)� �p⇤(�|Z) is an
honest de Rham k-form, which we call ⌘ 2 ⌦k(M). It follows that

! = p⇤(↵|Z) ^ d log(�) + �p⇤(�|Z) + ⌘,

which is of the desired form (4.8).
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Moreover, for a fixed tubular neighborhood and distance function �, we have that ✓ and
↵ in equation (4.8) are unique. Indeed, the decomposition (4.6) in combination with equation
(4.10) gives that for q 2 Z $ {t = 0}:

bT ⇤
q M = T ⇤

q Z �
*

✓

dt

t

◆

q

+

= T ⇤
q Z �

D

(d log(�))q

E

.

Hence,

^k
⇣

bT ⇤
q M

⌘

=
h

^kT ⇤
q Z

i

�
h

^k�1T ⇤
q Z ^

D

(d log(�))q

Ei

.

Since at q 2 Z, ↵q and
�

p⇤(✓)
�

q
have to be interpreted as elements of ^kT ⇤

q Z and ^k�1T ⇤
q Z

by the conventions (4.7), it follows that the pullbacks of ↵ and p⇤(✓) to Z are unique. Thus,
denoting by i : Z ,! M the inclusion, we have that i⇤(p⇤(✓)) = (p � i)⇤(✓) = ✓ is unique.
Uniqueness of ✓ then also implies uniqueness of ↵.

Note that ✓ is even completely independent of the choice of tubular neighborhood and
distance function �. Indeed, if ⇠ is the normal b-vector field of (M,Z), then we have

◆⇠ (!|Z) = ◆⇠ (↵|Z + d log(�)|Z ^ ✓) = ✓.

This is true since for q 2 Z we have ◆⇠
q

↵q = ◆⇠
q

✓q = 0 (keeping in mind the conventions (4.7) and
that T ⇤

q Z = h⇠qi0 by (4.5)) and ◆⇠
q

(d log(�))q = 1 (Use (4.10) and note that ◆⇠
q

(d log(h))q = 0
as before, whereas (dt/t)q(⇠q) = 1 as stated in the line above (4.6)). The di↵erential form ↵
however does depend on these choices. Suppose we have distance functions � and �0, associated
with tubular neighborhoods p : E ! Z and p0 : E0 ! Z respectively. Then we have that � and
�0 di↵er by a smooth factor g 2 C1(M) that is strictly positive. Indeed, although � and �0 fail
to be smooth at points of Z, the function g will be smooth: as in equation (4.9), we can write
locally near Z

�(x1, . . . , xn�1, t) = |t|h(x1, . . . , xn�1) and �0(x1, . . . , xn�1, t) = |t|h0(x1, . . . , xn�1),

for smooth functions h, h0 that are strictly positive. It follows that we can write g = ef for some
smooth function f 2 C1(M) and get �0 = ef� on M . Hence

d log(�0) = d log(�) + df.

We then get

! = ↵+ d log(�) ^ p⇤(✓) = ↵0 + d log(�0) ^ (p0)⇤(✓) = ↵0 + (d log(�) + df) ^ (p0)⇤(✓). (4.12)

Taking the restriction to Z then gives

↵|Z + (d log(�))|Z ^ ✓ = ↵0|Z + (d log(�) + df)|Z ^ ✓,
hence ↵|Z = ↵0|Z + [d (f |Z)] ^ ✓. In the particular case where � and �0 are defined on the same
tubular neighborhood E0 = E, then equation (4.12) implies that ↵ = ↵0 + df ^ p⇤(✓).

Remark 4.1.17. If M and Z are orientable, we can proceed di↵erently. Lemma 4.1.2 ensures
that Z is the zero locus of some defining function f on a tubular neighborhood U . We get a
well-defined one-form df/f on U \ Z, which extends over Z as a b-form. A partition of unity
argument shows that any b-form ! 2 b⌦k(M) can be written on U as

!|U = ↵ ^ df

f
+ � (4.13)
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for some ↵ 2 ⌦k�1(U) and � 2 ⌦k(U) that again have to be interpreted by the rules (4.7).
The decomposition (4.6) again implies that, for a given defining function f , the pullbacks

of ↵ and � to Z are uniquely determined. However, ↵ and � themselves are not unique, since
they are defined up to summands of the form hdf for h 2 C1(U) and µ ^ df for µ 2 ⌦k�1(U),
respectively. If g is another defining function for Z, then we have f = gh for some h 2 C1(U)
that is nowhere vanishing. We get

df

f
=

dg

g
+ d log(|h|),

which implies that

!|U = ↵ ^ dg

g
+ (� + ↵ ^ d log(|h|)).

Being a Lie algebroid, bTM carries a di↵erential bd : b⌦k(M) ! b⌦k+1(M) that satisfies
bd� bd = 0. This di↵erential is determined by the fact that the restriction b⌦•(M)! ⌦•(M \Z)
is a chain map. So for ! 2 b⌦k(M), we have that bd! is the unique extension of d(!|M\Z) over
Z as a b-form. In the decomposition (4.8), we have

bd
�

↵+ d log(�) ^ p⇤(✓)
�

= d↵+ d log(�) ^ d(p⇤(✓)) = d↵+ d log(�) ^ p⇤(d✓).

In coordinates (x1, . . . , xn) near Z $ {x1 = 0}, we write

! =
X

1<i2<···<i
k

n

fi2,...,i
k

dx1
x1
^ dxi2 ^ · · · ^ dxi

k

+
X

1<i1<···<i
k

n

gi1,...,i
k

dxi1 ^ · · · ^ dxi
k

and then

bd! =
X

1<i1<···<i
k

n

✓

x1
@gi1,...,i

k

@x1

◆

dx1
x1
^ dxi1 ^ · · · ^ dxi

k

+
X

1<i1<···<i
k

n

n
X

j=2

@gi1,...,i
k

@xj
dxj ^ dxi1 ^ · · · ^ dxi

k

�
X

1<i2<···<i
k

n

n
X

j=2

@fi2,...,i
k

@xj

dx1
x1
^ dxj ^ dxi2 ^ · · · ^ dxi

k

.

As bd � bd = 0, we can form the b-de Rham complex

0! b⌦0(M)
bd�! b⌦1(M)

bd�! b⌦2(M)
bd�! · · · bd�! 0.

Pullbacks and b-derivatives

As expected, one can pull back b-forms under b-maps. Let f : (X,ZX) ! (Y, ZY ) be a b-map.
We define for all p 2 X:

⇣

bdfp
⌘⇤

: bT ⇤
f(p)Y ! bT ⇤

pX

by the rules:

• If p /2 ZX then f(p) /2 ZY , hence bT ⇤
pX = T ⇤

pX and bT ⇤
f(p)Y = T ⇤

f(p)Y . So we can define
�

bdfp
�⇤

to be the usual pullback by f .

• On T ⇤
f(p)ZY for p 2 ZX we define

�

bdfp
�⇤

to be the pullback by f |Z
X

.
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• If y is a local defining function for ZY , then we define for p 2 ZX :

⇣

bdfp
⌘⇤

 

dy

y

�

�

�

�

f(p)

!

=
f⇤(dy)

f⇤y

�

�

�

�

p

=
d(f⇤y)

f⇤y

�

�

�

�

p

.

Note here that f⇤y is indeed a local defining function for ZX .

We have to check that this definition is consistent. Suppose h is a non-vanishing function,
locally defined near ZY . Then hy is also locally defining for ZY . We have for p 2 ZX :

d(hy)

hy

�

�

�

�

f(p)

=
dh

h

�

�

�

�

f(p)

+
dy

y

�

�

�

�

f(p)

(4.14)

Now
�

bdfp
�⇤

takes the left hand side of (4.14) to

d(f⇤(hy))

f⇤(hy)

�

�

�

�

p

,

whereas the right hand side of (4.14) is mapped to

f⇤

 

dh

h

�

�

�

�

f(p)

!

+
d(f⇤y)

f⇤y

�

�

�

�

p

=
d(f⇤h)

f⇤h

�

�

�

�

p

+
d(f⇤y)

f⇤y

�

�

�

�

p

.

Things check out because

d(f⇤(hy))

f⇤(hy)

�

�

�

�

p

=
d(f⇤h)

f⇤h

�

�

�

�

p

+
d(f⇤y)

f⇤y

�

�

�

�

p

.

Taking exterior powers, we require
�

bdfp
�⇤

to distribute over the wedge product, and this results
in a well-defined pull-back map (bdf)⇤ : b⌦k(Y )! b⌦k(X). Indeed, the above rules imply that

(bdf)⇤
✓

dy

y
^ ↵+ �

◆

=
d(f⇤y)

f⇤y
^ f⇤↵+ f⇤�, (4.15)

where y locally defines ZY and ↵,� are honest de Rham forms. This can be seen as follows:
clearly (4.15) holds at points p /2 ZX . At p 2 ZX , we have by definition

⇣

bdfp
⌘⇤

 

dy

y

�

�

�

�

f(p)

!

=
d(f⇤y)

f⇤y

�

�

�

�

p

,

and, since by convention ↵f(p) 2 ^k�1T ⇤
f(p)ZY ,

⇣

bdfp
⌘⇤

�

↵f(p)

�

= (f |⇤Z
X

↵)p.

Here (f |⇤Z
X

↵)p = (f⇤↵)p since by convention

(f⇤↵)p = (i⇤(f⇤↵))p =
�

(f � i)⇤(↵)�
p
= (f |⇤Z

X

↵)p,

where i : ZX ,! X is the inclusion. Similarly one sees that
�

bdfp
�⇤ �

�f(p)
�

= (f⇤�)p, and so
Equation (4.15) is correct. Note that the right hand side of (4.15) is indeed a b-form since
f⇤y = y � f is a local defining function for ZX .
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We called this pullback map suggestively (bdf)⇤, since in degree one it is the dual map of
the b-derivative bdf : bTX ! bTY . We will only need this b-derivative in the most illuminating
case where f is a b-di↵eomorphism. We can then push forward vector fields under f , and since
f(ZX) = ZY , vector fields tangent to ZX are taken to vector fields tangent to ZY . Hence a
b-vector field V 2 �(bTX) can be pushed forward to f⇤(V ) 2 �(bTY ), so that at the level of
sections, we can define

�(bTX)! �(bTY ) : V 7! f⇤(V ).

Since the base map f is a di↵eomorphism, this defines a vector bundle map bdf : bTX ! bTY .

Remark 4.1.18. To keep the notation short, we will also denote the pullback of a b-form !
under a b-map f by f⇤! instead of (bdf)⇤(!).

Some properties in b-calculus

The b-di↵erential bd enjoys the usual properties. It is a degree 1 derivation of the wedge product
^ (as is the case in the exterior di↵erential algebra for any Lie algebroid), and it commutes with
the pullback f⇤ of a b-map f : (X,ZX)! (Y, ZY ). Indeed, using that the restriction maps

rX :
⇣

b⌦•(X), bd
⌘

! �

⌦•(X \ ZX), d
�

and rY :
⇣

b⌦•(Y ), bd
⌘

! �

⌦•(Y \ ZY ), d
�

are chain maps and that the usual de Rham di↵erential d commutes with pullbacks, we have

rX
⇣

f⇤
⇣

bd!
⌘⌘

= f⇤
⇣

rY
⇣

bd!
⌘⌘

= f⇤ (d (rY (!)))

= d (f⇤ (rY (!))) = d (rX(f⇤!)) = rX
⇣

bd(f⇤!)
⌘

.

Hence the equality bd(f⇤!) = f⇤ �bd!
�

holds on X \ ZX , and extends over ZX by continuity.

Remark 4.1.19. From now on, we will also denote the b-de Rham di↵erential bd by d.

The usual operations on de Rham di↵erential forms can also be applied to b-forms. For
instance, let ! 2 b⌦k(M) be a b-form and X 2 bX(M) a b-vector field. Then the flow {�t} of
X consists of b-di↵eomorphisms, and we can define the Lie derivative of ! in direction of X as

£X! =
d

dt

�

�

�

�

t=0

�⇤t!,

where this pullback is well-defined by the above. Next, it is obvious that we can contract b-
forms with a b-vector field. Cartan’s magic formula also still holds, i.e. for ! 2 b⌦k(M) and
X 2 bX(M), we have

£X! = d(◆X!) + ◆Xd!. (4.16)

Indeed, using that the restriction map r : b⌦k(M)! ⌦k(M \Z) commutes with the di↵erentials
and that contraction is pointwise, we have

r(d(◆X!)) + r(◆Xd!) = d(r(◆X!)) + ◆X(r(d!)) = d(◆X(r(!))) + ◆Xd(r(!)) = £X(r(!)).

and using linearity of r along with the fact that the �t are b-maps:

£X(r(!)) =
d

dt

�

�

�

�

t=0

�⇤t (r(!)) =
d

dt

�

�

�

�

t=0

r(�⇤t!) = r

✓

d

dt

�

�

�

�

t=0

�⇤t!

◆

= r (£X!) .

Hence, Cartan’s formula (4.16) holds on M \ Z and extends over Z by continuity. This recipe
applies to many statements about calculus with de Rham forms. For instance, we will also need
a version of Lemma 8.2.3 in which the ⇢t are b-di↵eomorphisms, the Xt are b-vector fields and
the !t are b-forms. Lemma 8.2.3 also holds in that b-setup since the b-version of the statement
holds on M \ Z (use that the restriction r is linear and that the ⇢t are b-maps) and extends
over Z by continuity.
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4.2 b-Symplectic manifolds

In this section, we introduce the notion of symplectic for the b-category and present b-analogs
of the classical Darboux-Moser theorems in symplectic geometry. We also prove the important
statement that log-symplectic structures may be regarded as the symplectic structures of the
b-category.

4.2.1 Definition and properties

Definition 4.2.1. Let (M,Z) be a 2n-dimensional b-manifold and ! 2 b⌦2(M) a b-form. Then
! is called b-symplectic if it is closed and non-degenerate. Non-degeneracy means that the
associated bundle map

![ : bTM ! bT ⇤M : X 7! ◆X!

is an isomorphism, or equivalently, that !n is nowhere vanishing as an element of b⌦2n(M).

Example 4.2.2. We take the b-manifold (M,Z) where M = (R2n, x1, y1, . . . , xn, yn) and Z is
the hyperplane y1 = 0. The b-form

! = dx1 ^ dy1
y1

+
n
X

i=2

dxi ^ dyi

is closed, since its restriction to M \ Z is a closed de Rham form. And ! is non-degenerate,
since

!n = n!dx1 ^ dy1
y1
^ dx2 ^ dy2 ^ · · · ^ dxn ^ dyn

is a nowhere vanishing b-form. Hence ! is a b-symplectic form on (M,Z). Note that the b-
bivector field ⇧ 2 �

� ^2 (bTM)
�

dual to ! is of the form (3.2), whence applying the anchor
map ⇢ to it yields a log-symplectic structure. This is no coincidence; we will show later that
the duals of b-symplectic forms are log-symplectic.

That this example is the local prototype of all b-symplectic manifolds is the content of the
b-Darboux theorem, which we will prove soon. But first, we show that b-symplectic structures
are closely related to cosymplectic structures.

Definition 4.2.3. A cosymplectic stucture on a manifold M2n+1 is a pair of di↵erential forms
(↵,!), where ↵ 2 ⌦1(M) and ! 2 ⌦2(M) are closed, such that ↵ ^ !n is a volume form.

Remark 4.2.4. We have the equivalence

(↵ ^ !n)p 6= 0,
(

↵p 6= 0

!p : Ker(↵p)⇥Ker(↵p)! R is non-degenerate
. (4.17)

Indeed, first assume that the right hand side of (4.17) holds. Then dim(Ker(↵p)) = 2n, and !n
p

is nonzero on Ker(↵p). So there exist v2, . . . , v2n+1 2 Ker(↵p) such that !n
p (v2, . . . , v2n+1) 6= 0.

Let v1 2 TpM \Ker(↵p). Then

(↵ ^ !n)p(v1, v2 . . . , v2n+1) = ↵p(v1)!
n
p (v2, . . . , v2n+1) 6= 0.

Conversely, if (↵ ^ !n)p 6= 0, then in particular ↵p 6= 0 hence dim(Ker(↵p)) = 2n. So we can
choose a basis {v1, . . . , v2n+1} of TpM where v2, . . . , v2n+1 2 Ker(↵p) and v1 /2 Ker(↵p). Since
(↵ ^ !n)p 6= 0, it evaluates every basis of TpM to a non-zero number. So

(↵ ^ !n)p(v1, v2, . . . , v2n+1) = ↵p(v1)!
n
p (v2, . . . , v2n+1) 6= 0,

which implies that !n
p (v2, . . . , v2n+1) 6= 0. Hence !n

p is nonzero on Ker(↵p), which shows that
the right hand side of (4.17) holds.
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Lemma 4.2.5. Let (M2n, Z) be a b-manifold with b-symplectic form !. By Lemma 4.1.16, we
can decompose

! = ↵+ d log(�) ^ p⇤(✓),

for some choice of distance function �. Here ✓ 2 ⌦1(Z), ↵ 2 ⌦2(M) and p : E ! Z is the
projection in a tubular neighborhood of Z. Denote by i : Z ,!M the inclusion. Then:

i) The pair (✓, i⇤↵) is a cosymplectic structure on Z.

ii) The codimension-one foliation of Z defined by ✓ is intrinsically defined. For each leaf

L
i
L

,! Z of this foliation, the form i⇤L(i
⇤↵) is an intrinsically defined symplectic form on L.

Proof. i) We have 0 = d! = d↵+ d log(�) ^ p⇤(d✓). The discussion following Lemma 4.1.16
shows that d↵ and d✓ are uniquely determined (for fixed �). Hence they must be zero:
d✓ = 0 and d↵ = 0. Then also d(i⇤↵) = i⇤(d↵) = 0. It remains to show that ✓ ^ (i⇤↵)n�1

is a volume form on Z. Non-degeneracy of ! implies that

!n = ↵n + n↵n�1 ^ d log(�) ^ p⇤(✓)

is a nowhere vanishing b-form. In particular, it is non-vanishing on Z. Hence by the
conventions established:

!n|Z = (i⇤↵)n + n(i⇤↵)n�1 ^ d log(�)|Z ^ ✓

is nowhere vanishing. Now (i⇤↵)n = 0 since it is a 2n-form on the (2n � 1)-dimensional
manifold Z. Hence

(i⇤↵)n�1 ^ d log(�)|Z ^ ✓
is nowhere vanishing. In particular, (i⇤↵)n�1 ^ ✓ does not vanish on Z.

ii) The discussion following Lemma 4.1.16 shows that ✓ does not depend on the choice of
distance function �, i.e. it comes canonically with !. The previous point i) implies in
particular that ✓ is nowhere zero. Hence it follows that ✓ gives a codimension-one foliation
of Z that is intrinsically defined. Next, the discussion following Lemma 4.1.16 shows that
i⇤↵ = ↵|Z is intrinsically defined modulo summands of the form [d(f |Z)] ^ ✓ for some
f 2 C1(M). If L is a leaf that integrates the foliation Ker(✓), then

i⇤L ([d(f |Z)] ^ ✓) = i⇤L ([d(f |Z)]) ^ i⇤L(✓) = 0.

So i⇤L(i
⇤↵) is intrinsically defined. Clearly i⇤L(i

⇤↵) is closed since ↵ is closed, and (4.17)
shows that i⇤L(i

⇤↵) is also non-degenerate. Hence i⇤L(i
⇤↵) is a symplectic form on L.

We already hinted at the fact that the dual bivector ⇧ of a b-symplectic form ! on (M,Z)
is log-symplectic. One might expect that the codimension-one symplectic foliation of Z which
comes canonically with ! coincides with the foliation of Z induced by ⇧|Z . We will show later
that this is indeed the case.

Remark 4.2.6. We can derive a particularly neat coordinate expression for the restriction !|Z
of a b-symplectic form ! on (M,Z). What follows is an expanded version of [GMP2, Remark
13]. Choose p 2 Z and let f be a local defining function for Z. We write near p:

! = ↵ ^ df

f
+ �.
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Let i : Z ,!M be the inclusion map, and denote ↵̃ := i⇤(↵) and �̃ = i⇤(�). We have

0 = d! = d↵ ^ df

f
+ d�,

and since d↵̃ and d�̃ are uniquely determined (as argued in Remark 4.1.17), they have to be
zero. So ↵̃ and �̃ are closed. The same proof as that of Lemma 4.2.5 shows that ↵̃ ^ �̃n�1 is
nowhere vanishing. Consequently, we have a closed form �̃ 2 ⌦2(Z) for which �̃n = 0 (being a
2n-form on a (2n� 1)-manifold) and �̃n�1 is nowhere zero (since the same holds for ↵̃^ �̃n�1).
By the presymplectic Darboux theorem 1.3.16, we find coordinates (x1, x2, y2, . . . , xn, yn) on Z
around p such that

�̃ =
n
X

i=2

dxi ^ dyi.

Since ↵̃ is closed, it is locally exact by the Poincaré Lemma. Hence there exists a smooth
function g defined near p on Z so that

↵̃ = dg =
@g

@x1
dx1 +

@g

@x2
dx2 +

@g

@y2
dy2 + · · ·+ @g

@xn
dxn +

@g

@yn
dyn.

We have that

↵̃ ^ �̃n�1 = (n� 1)!
@g

@x1
dx1 ^ dx2 ^ dy2 ^ · · · ^ dxn ^ dyn

is non-vanishing, hence @g/@x1 is non-vanishing. It follows that the map

(x1, x2, y2, . . . , xn, yn) 7! (g, x2, y2, . . . , xn, yn)

is a change of coordinates on Z near p, since its Jacobian determinant is given by

det

2

6

6

6

6

6

6

6

6

4

@g

@x1

@g

@x2
. . .

@g

@yn
@x2
@x1

@x2
@x2

. . .
@x2
@yn

...
...

...
@yn
@x1

@yn
@x2

. . .
@yn
@yn

3

7

7

7

7

7

7

7

7

5

= det

2

6

6

4

@g

@x1
⇤

0 I(2n�2)⇥(2n�2)

3

7

7

5

=
@g

@x1
,

which is non-vanishing. We may hence assume that ↵̃ = dx1. Now let ⇡ : E ! Z be a
tubular neighborhood of Z and consider a local trivialization U ⇥R near p 2 U . Shrinking U if
necessary, we can assume that (x1, x2, y2, . . . , xn, yn) are coordinates on U , and we let t be the
coordinate on R. Then (⇡⇤x1,⇡⇤x2,⇡⇤y2, . . . ,⇡⇤xn,⇡⇤yn, t) are coordinates on U ⇥R, which we
just still denote by (x1, x2, y2, . . . , xn, yn, t) as is usual. Since f is a local defining function for
Z $ {t = 0}, we have f = ht for some h non-vanishing. It follows that the map

(x1, x2, y2, . . . , xn, yn, t) 7! (x1, x2, y2, . . . , xn, yn, f)

is a change of coordinates on M near p, since its Jacobian determinant at p 2 Z is

@f

@t
(p) =

✓

@h

@t
t+ h

◆

(p) = h(p),

which is nonzero. Hence in the coordinates (x1, x2, y2 . . . , xn, yn, f) on M near p, we have

!|Z = ↵̃ ^ df

f

�

�

�

�

Z

+ �̃ =

 

dx1 ^ df

f
+

n
X

i=2

dxi ^ dyi

!

�

�

�

�

�

Z

.
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Renaming y1 := f , we obtain the local expression we were looking for:

!|Z =

 

dx1 ^ dy1
y1

+
n
X

i=2

dxi ^ dyi

!

�

�

�

�

�

Z

. (4.18)

We need one more ingredient to prove the b-Darboux theorem, namely a b-version of the
local Moser theorem.

Theorem 4.2.7 (Local b-Moser). Let !0 and !1 be two b-symplectic forms on (M,Z). If
!0|Z = !1|Z , then there exist neighborhoods U0, U1 of Z in M and a di↵eomorphism � : U0 ! U1

such that �|Z = IdZ and �⇤!1 = !0.

Proof. Define !t = !0+ t(!1�!0) for t 2 [0, 1]. We will prove that there exists a neighborhood
U of Z in M and an isotopy �t : U !M , such that �t|Z = IdZ and �⇤t !t = !0 for all t 2 [0, 1].
This then gives the desired di↵eomorphism �1 : U ! �1(U) between opens around Z, with
�1|Z = IdZ and �⇤1!1 = !0. Suppose {�t}t2[0,1] is an isotopy such that �t|Z = IdZ for all
t 2 [0, 1]. If {vt}t2[0,1] is the associated time dependent vector field, defined by

vt =
d�t
dt
� ��1

t ,

then vt is a b-vector field vanishing on Z. Indeed, for p 2 Z we have

vt(p) =
d�t
dt

�

��1
t (p)

�

=
d

ds

�

�

�

�

s=t

�s(�
�1
t (p)) =

d

ds

�

�

�

�

s=t

�s(p) =
d

ds

�

�

�

�

s=t

p = 0,

showing that vt vanishes on Z (in particular, it is tangent to Z). As in Theorem 1.3.10, we have
the following equivalences for such an isotopy:

�⇤t !t = !0 8t 2 [0, 1], d

dt
(�⇤t !t) = 0

, �⇤t

✓

£v
t

!t +
d

dt
!t

◆

= 0

, £v
t

!t = !0 � !1

, d (◆v
t

!t) = !0 � !1. (4.19)

Above manipulations are allowed, as is noted in the paragraph following Remark 4.1.19. Because
(!0 � !1)|Z = 0, the b-form !0 � !1 is an honest de Rham form by Lemma 4.1.15. Since it is
closed, the relative Poincaré Lemma 1.3.9 gives a neighborhood V of Z on which !0 � !1 = d�
for some � 2 ⌦1(V ) with �|Z = 0. Hence to solve (4.19), it is su�cient to solve

◆v
t

!t = � (4.20)

for vt. Note that !t(p) = !0(p) for p 2 Z, so that each !t is non-degenerate on Z. Since
non-degeneracy is an open condition, each !t is non-degenerate on some open neighborhood Vt

of Z. Using the Tube Lemma 1.3.13 and shrinking V if necessary, we can assume that all !t for
t 2 [0, 1] are b-symplectic on V . We can now solve (4.20) on V as

vt = (![t)
�1(�).

The same argument as in the proof of Theorem 1.3.14 gives an open U around Z so that the
isotopy {�t} integrating {vt} is defined on U for all t 2 [0, 1]:

� : [0, 1]⇥ U !M.

Since the vt vanish on Z, we have �t|Z = IdZ for all t 2 [0, 1]. This finishes the proof.
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As in the symplectic case, the local b-Moser theorem can be used to prove a local normal
form result for b-symplectic forms, an analogue of the classical Darboux theorem.

Theorem 4.2.8 (b-Darboux). Let ! be a b-symplectic form on (M2n, Z) and p 2 Z. Then we
can find a coordinate chart (U, x1, y1, . . . , xn, yn) around p such that on U , the hypersurface Z
is locally defined by y1 = 0 and

!|U = dx1 ^ dy1
y1

+
n
X

i=2

dxi ^ dyi.

Proof. By Remark 4.2.6, we find coordinates (V, x01, y
0
1, . . . , x

0
n, y

0
n) around p such that Z is

locally defined by y01 = 0 and

!|V \Z =

 

dx01 ^
dy01
y01

+
n
X

i=2

dx0i ^ dy0i

!

�

�

�

�

�

Z

.

The local b-Moser theorem gives neighborhoods U0 and U1 of V \ Z inside V and a di↵eomor-
phism � : U0 ! U1 such that �|V \Z = IdV \Z and

�⇤
 

dx01 ^
dy01
y01

+
n
X

i=2

dx0i ^ dy0i

!

= d(x01 � �) ^
d(y01 � �)
y01 � �

+
n
X

i=2

d(x0i � �) ^ d(y0i � �) = !|U0 .

So we only have to set U := U0 and define new coordinates

(x1, y1, . . . , xn, yn) := (x01 � �, y01 � �, . . . , x0n � �, y0n � �).

4.2.2 Log-symplectic equals b-symplectic

We will now show that a log-symplectic structure (⇧,M,Z) can be regarded as a b-symplectic
structure on (M,Z), and vice versa. Recall that we identify the sections of bTM with the set of
vector field on M that are tangent to Z, as follows. The anchor map ⇢ : bTM ! TM induces
a C1(M)-linear map on sections

e⇢ : �(bTM)! �(TM) : X 7! ⇢ �X

that is injective since ⇢ is the identity map on the dense subset M \ Z. As ⇢ restricts over Z
to a bundle epimorphism ⇢|Z : bTM |Z ! TZ, the map e⇢ is a C1(M)-isomorphism onto the
submodule of vector fields tangent to Z:

e⇢ : �(bTM)
⇠�! {Y 2 X(M) : Y (p) 2 TpZ for all p 2 Z}.

Taking exterior powers, also

e⇢ : �(^2(bTM))
⇠�! {Y 2 X2(M) : Y (p) 2 ^2TpZ for all p 2 Z}. (4.21)

Under this correspondence, we have the following:

Lemma 4.2.9. A log-symplectic structure ⇧ on M2n with singular locus Z is the same thing
as a non-degenerate section ⇧ 2 �(^2(bTM)) satisfying [⇧,⇧] = 0, where bTM is the b-tangent
bundle of (M,Z).
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Proof. First assume ⇧ is a log-symplectic structure on M2n with singular locus Z. We have
showed in Corollary 3.2.3 that ⇧ is then tangent to Z, i.e. ⇧p 2 ^2TpZ for all p 2 Z. This
means that ⇧ can naturally be considered as a b-bivector ⇧ 2 �(^2(bTM)), applying (e⇢)�1 as
above. To show that ⇧ 2 �(^2(bTM)) is non-degenerate, we only need to look at points in Z,
since at p /2 Z we have that ⇧n

p 2 ^2nTpM = ^2n(bTpM) is nonzero as ⇧ is log-symplectic. But
around p 2 Z, we have by Theorem 3.2.2 that

⇧ = y1
@

@x1
^ @

@y1
+

n
X

i=2

@

@xi
^ @

@yi
,

where Z is locally given by y1 = 0. Hence

⇧n = n!y1
@

@x1
^ @

@y1
^ · · · ^ @

@xn
^ @

@yn
2 �(^2nTM),

which is non-vanishing as a section of ^2n(bTM). Conversely, assume (M2n, Z) is a b-manifold
and we are given a non-degenerate section ⇧ 2 �(^2(bTM)) ⇠= bX2(M) ⇢ X2(M) such that
[⇧,⇧] = 0. Again, we only have to check the log-symplectic condition near Z. Let p 2 Z and
choose adapted coordinates (x1, y1, . . . , xn, yn) near p such that locally Z is given by x1 = 0.
We can then write

⇧n = fx1
@

@x1
^ @

@y1
^ · · · ^ @

@xn
^ @

@yn
2 �(^2n(bTM)) (4.22)

for some smooth function f defined near p. Since ⇧ 2 �(^2(bTM)) is non-degenerate, we have
that (4.22) is non-vanishing as a b-2n-vector field. Hence f is non-vanishing, and this implies
that ⇧n vanishes linearly on Z when considered as a section of ^2nTM .

So log-symplectic is the notion of non-degenerate Poisson in the b-category. This shows
why the b-category is useful for our purposes: by considering a log-symplectic structure as a
b-bivector, we get rid of its singularities. As one might expect, it is also true in the b-category
that non-degenerate Poisson and symplectic are equivalent notions. This then establishes the
following correspondence between log-symplectic and b-symplectic structures:

Theorem 4.2.10. Given a b-manifold (M2n, Z), a b-form ! 2 b⌦2(M) is b-symplectic if and
only if its dual bivector ⇧ is a log-symplectic structure on M with singular locus Z.

Proof. Given a b-symplectic form ! 2 b⌦2(M), we have that ![ : bTM ! bT ⇤M can be
inverted to define a b-bivector ⇧] = �(![)�1 : bT ⇤M ! bTM . Applying the anchor map
e⇢ : �(^2(bTM))! �(^2TM) gives a bivector e⇢(⇧), which we call the dual bivector of !. Now,
checking that e⇢(⇧) is log-symplectic only needs to be done locally near Z (After all, away from Z
we have that ! is an honest symplectic de Rham form and that e⇢ is the identity map, hence the
dual bivector field ⇧ = e⇢(⇧) non-degenerate Poisson over there). By the b-Darboux theorem,
we can write near p 2 Z $ {y1 = 0}:

! = dx1 ^ dy1
y1

+
n
X

i=2

dxi ^ dyi.

In these coordinates,

⇧ = �!�1 = y1
@

@x1
^ @

@y1
+

n
X

i=2

@

@xi
^ @

@yi
2 �(^2(bTM)),
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hence

e⇢(⇧) = y1
@

@x1
^ @

@y1
+

n
X

i=2

@

@xi
^ @

@yi
2 �(^2TM),

which is clearly a log-symplectic structure with singular locus Z $ {y1 = 0}. Conversely,
assume ⇧ 2 �(^2TM) is log-symplectic with singular locus Z. Then ⇧ is tangent to Z, and
previous lemma shows that (e⇢)�1(⇧) is a non-degenerate b-bivector on (M,Z). So we can invert
�

(e⇢)�1(⇧)
�]

and obtain a b-form ! 2 b⌦2(M) by ![ := �
⇣

�

(e⇢�1)(⇧)
�]
⌘�1

: bTM ! bT ⇤M .

We show that this is a b-symplectic form. Away from Z, there is again nothing to prove, since

there ![ = � �⇧]��1
is plain symplectic. Around p 2 Z $ {y1 = 0}, we can write

⇧ = y1
@

@x1
^ @

@y1
+

n
X

i=2

@

@xi
^ @

@yi
2 �(^2TM)

hence

(e⇢)�1(⇧) = y1
@

@x1
^ @

@y1
+

n
X

i=2

@

@xi
^ @

@yi
2 �(^2(bTM))

and so

! = �((e⇢)�1(⇧))�1 = dx1 ^ dy1
y1

+
n
X

i=2

dxi ^ dyi,

which is clearly a b-symplectic form.

So this dual approach allows us to regard log-symplectic structures as the symplectic struc-
tures on the b-tangent bundle, and in this way symplectic techniques can be used in the study of
log-symplectic structures. In what follows, we will move back and forth between log-symplectic
stuctures and their associated b-symplectic structures, depending on which point of view is the
most convenient. It is important to keep in mind that both notions are equivalent. We will also
denote by ⇧ the dual bivector e⇢(⇧) of a b-symplectic form !, to keep the notation concise.

Remark 4.2.11. We saw in Lemma 4.2.5 that with a b-symplectic form ! 2 b⌦2(M) on
(M,Z) comes an intrinsically defined codimension one symplectic foliation of Z. It is no longer
a mystery what this foliation is. Since the dual bivector ⇧ = �!�1 2 �(^2TM) is log-symplectic
with singular locus Z, we know that ⇧|Z induces a codimension one symplectic foliation on Z.
It is only natural to expect that these two foliations coincide. This is readily checked. Let
! = ↵+d log(�)^p⇤(✓) for some choice of distance function �, as in Lemma 4.2.5. The leaves of
the foliation induced by ! integrate Ker(✓), and each such leaf L is endowed with a symplectic
form i⇤L↵̃, where ↵̃ is the pullback of ↵ to Z. To show that this foliation is indeed the foliation
of ⇧|Z , we have to show that

(

Ker(✓p) = Im(⇧]p) at p 2 Z

i⇤L↵̃ = �⇧|�1
L for each leaf L

. (4.23)

Since ✓ and i⇤L↵̃ are intrinsic and both statements in (4.23) are pointwise, we can check them
in coordinates choosing any distance function �. By the b-Darboux theorem, we can choose
coordinates (x1, y1, . . . , xn, yn) near p 2 Z $ {y1 = 0} such that

!|Z = dx1 ^ dy1
y1

+
n
X

i=2

dxi ^ dyi = dx1 ^ d log |y1|+
n
X

i=2

dxi ^ dyi,
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where |y1| is a local distance function. The dual bivector ⇧ = �!�1 then satisfies

⇧|Z =
@

@x1
^ y1

@

@y1
+

n
X

i=2

@

@xi
^ @

@yi
2 �(^2(bTM))

=
n
X

i=2

@

@xi
^ @

@yi
2 �(^2TM).

So we see that ✓ = �dx1, hence at p 2 Z:

Ker(✓p) = span

(

@

@x2

�

�

�

�

p

,
@

@y2

�

�

�

�

p

, . . . ,
@

@xn

�

�

�

�

p

,
@

@yn

�

�

�

�

p

)

= Im(⇧]p).

That is, the leaves of both foliations are the level sets of x1. On such a leaf L, we have

i⇤L↵̃ =
n
X

i=2

dxi ^ dyi = �
 

n
X

i=2

@

@xi
^ @

@yi

!

�

�

�

�

�

�1

L

= �⇧|�1
L .

So if ⇧ 2 �(^2TM) is log-symplectic, then we have established that the symplectic foliation
of ⇧|Z has a closed defining one-form (namely ✓ above) and a closed two-form that pulls back
to the symplectic form on each leaf (namely ↵̃ above). This is a rather special property, which
will play an important role in next chapter.

Example 4.2.12. The real a�ne group A(n) is the group of a�ne transformations x 7! Ax+a
in Rn. Thus, the a�ne group is parameterized by pairs (A, a) consisting of an invertible matrix
A 2 GLn(R) and a vector a 2 Rn. This correspondence can be used to give A(n) the structure
of a smooth manifold of dimension dim (GLn(R)⇥ Rn) = n(n+ 1). As a group however, A(n)
is not the Cartesian product of the groups GLn(R) and Rn since the group multiplication law
is

(A, a) · (B, b) = (AB, a+Ab).

So in fact, A(n) as a group is the semi-direct product A(n) = GLn(R)n Rn, and this multipli-
cation law gives A(n) a Lie group structure.

Let us consider the 2-dimensional a�ne group A(1) consisting of transformations in R of the form
x 7! ax+ b, where a 2 R0 and b 2 R. The group multiplication law is (a, b) · (c, d) = (ac, ad+ b),
with neutral element e = (1, 0). The Lie algebra a(1) of A(1) is isomorphic to the vector space
of left invariant vector fields, via a(1) 3 v 7! vL. Here vL(p) = (dLp)e (v), where Lp is left
multiplication by p 2 A(1). In the coordinates (a, b) on A(1), we have correspondingly a basis

⇢

@

@a

�

�

�

�

e

,
@

@b

�

�

�

�

e

�

of TeA1 = a(1). Hence, a basis for the left invariant vector fields is {v1, v2}, where

v1 = dL(a,b)

 

@

@a

�

�

�

�

(1,0)

!

=
d

dt

�

�

�

�

t=0

L(a,b)

�

(1, 0) + t(1, 0)
�

=
d

dt

�

�

�

�

t=0

L(a,b)(1 + t, 0)

=
d

dt

�

�

�

�

t=0

(a+ at, b) = (a, 0) = a
@

@a

and

v2 = dL(a,b)

 

@

@b

�

�

�

�

(1,0)

!

=
d

dt

�

�

�

�

t=0

L(a,b)

�

(1, 0) + t(0, 1)
�

=
d

dt

�

�

�

�

t=0

L(a,b)(1, t)
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=
d

dt

�

�

�

�

t=0

(a, at+ b) = (0, a) = a
@

@b
.

Now note that the Lie bracket of these vector fields is


a
@

@a
, a
@

@b

�

= a
@

@a

✓

a
@

@b

◆

� a
@

@b

✓

a
@

@a

◆

= a

✓

@

@b
+ a

@2

@a@b

◆

� a2
@2

@b@a
= a

@

@b
.

Hence, the Lie algebra a(1) is span{v1, v2} with [v1, v2] = v2. This gives a corresponding Lie-
Poisson structure ⇧ on the dual a(1)⇤. If (µ1, µ2) are the coordinates on a(1)⇤ induced by the
dual basis {v⇤1, v⇤2}, then Example 2.4.10 shows that

⇧ = {µ1, µ2} @

@µ1
^ @

@µ2
= µ2

@

@µ1
^ @

@µ2
.

So the Lie-Poisson structure ⇧ is log-symplectic, with critical locus the axis {µ2 = 0} and dual
b-symplectic form

! = dµ1 ^ dµ2

µ2
.

The symplectic foliation of a(1)⇤ induced by ⇧ integrates Im(⇧]) and we have

Im
⇣

⇧](µ1,µ2)

⌘

= span
n

⇧](dµ1),⇧
](dµ2)

o

= span

⇢

µ2
@

@µ2
,�µ2

@

@µ1

�

.

Hence, the exceptional hypersurface {µ2 = 0} is the union of symplectic leaves of dimension 0
(i.e. all points on the line), and the open upper and lower half-planes are symplectic leaves of
dimension 2. This is consistent with previous remark: the foliation of {µ2 = 0} is defined by
the closed one-form dµ1 on {µ2 = 0} and the zero form is a closed two-form on {µ2 = 0} which
pulls back to the symplectic form on each leaf.

An interesting side remark is that the Lie algebra a(1) considered in the above example is
the only non-abelian two-dimensional Lie algebra, up to isomorphism.

4.2.3 Modular vector fields of b-symplectic manifolds

In Section 2.9, we introduced modular vector fields on Poisson manifolds. Recall the definition:

Definition 4.2.13. Let (M,⇧) be an orientable Poisson manifold and ⌦ a volume form on it.
Denote by Xf the Hamiltonian vector field associated to the smooth function f 2 C1(M). The
modular vector field X⌦

⇧ is the derivation given by the mapping

X⌦
⇧ : C1(M)! C1(M) : f 7! £X

f

⌦

⌦
.

Recall that the modular vector field X⌦
⇧ is a Poisson vector field. When ⇧ is log-symplectic,

then X⌦
⇧ enjoys some convenient additional properties.

Lemma 4.2.14. Let (M2n, Z) be a b-symplectic manifold, with b-symplectic form ! and dual
log-symplectic bivector ⇧. The b-Darboux theorem gives coordinates (x1, y1, . . . , xn�1, yn�1, z, t)
around p 2 Z so that ! can be written as

! =
n�1
X

i=1

dxi ^ dyi +
1

z
dz ^ dt.
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Consider the locally defined volume form

⌦ = dx1 ^ dy1 ^ · · · ^ dxn�1 ^ dyn�1 ^ dz ^ dt.

Working in these local coordinates, the modular vector field X⌦
⇧ associated to ⇧ and ⌦ is given

by

X⌦
⇧ = � @

@t
.

Proof. Since

⇧ =
n�1
X

i=1

@

@xi
^ @

@yi
+ z

@

@z
^ @

@t
,

Lemma 2.7.4 implies that the Hamiltonian vector field of f 2 C1(M) is

Xf =
n�1
X

i=1

✓

@f

@xi

@

@yi
� @f

@yi

@

@xi

◆

+ z
@f

@z

@

@t
� z

@f

@t

@

@z
.

Using Cartan’s magic formula, we have

£X
f

⌦ =
n�1
X

i=1

"

@f

@xi
£

@

@y

i

(dx1 ^ · · · ^ dt) + d

✓

@f

@xi

◆

^ ◆
@

@y

i

(dx1 ^ · · · ^ dt)

� @f

@yi
£

@

@x

i

(dx1 ^ · · · ^ dt)� d

✓

@f

@yi

◆

^ ◆
@

@x

i

(dx1 ^ · · · ^ dt)

#

+ z
@f

@z
£

@

@t

(dx1 ^ · · · ^ dt) + d

✓

z
@f

@z

◆

^ ◆
@

@t

(dx1 ^ · · · ^ dt)

� z
@f

@t
£

@

@z

(dx1 ^ · · · ^ dt)� d

✓

z
@f

@t

◆

^ ◆
@

@z

(dx1 ^ · · · ^ dt)

(4.24)

In (4.24), we have

£
@

@y

i

(dx1 ^ . . . ^ dt) =
n�1
X

j=1

dx1 ^ · · · ^ dyj�1 ^
✓

£
@

@y

i

dxj

◆

^ dyj ^ · · · ^ dz ^ dt

+
n�1
X

j=1

dx1 ^ · · · ^ dyj�1 ^ dxj ^
✓

£
@

@y

i

dyj

◆

^ · · · ^ dz ^ dt

+ dx1 ^ · · · ^ dyn�1 ^
✓

£
@

@y

i

dz

◆

^ dt+ dx1 ^ · · · ^ dyn�1 ^ dz ^
✓

£
@

@y

i

dt

◆

= 0

since £ � d = d �£. Similarly we find

0 = £
@

@x

i

(dx1 ^ · · · ^ dt) = £
@

@t

(dx1 ^ · · · ^ dt) = £
@

@z

(dx1 ^ · · · ^ dt).

Next,

◆
@

@y

i

(dx1 ^ · · · ^ dt) = �dx1 ^ · · · ^ dyi�1 ^ dxi ^ dxi+1 ^ dyi+1 ^ · · · ^ dz ^ dt,
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hence

d

✓

@f

@xi

◆

^ ◆
@

@y

i

(dx1 ^ · · · ^ dt) =

✓

@2f

@yi@xi
dyi

◆

^ (�dx1 ^ · · · ^ dyi�1 ^ dxi ^ dxi+1 ^ · · · ^ dt)

=
@2f

@yi@xi
dx1 ^ · · · ^ dt.

Similarly,

◆
@

@x

i

(dx1 ^ · · · ^ dt) = dx1 ^ · · · ^ dyi�1 ^ dyi ^ dxi+1 ^ · · · ^ dz ^ dt,

hence

d

✓

@f

@yi

◆

^ ◆
@

@x

i

(dx1 ^ · · · ^ dt) =

✓

@2f

@xi@yi
dxi

◆

^ dx1 ^ · · · ^ dyi�1 ^ dyi ^ dxi+1 ^ · · · ^ dt

=
@2f

@xi@yi
dx1 ^ · · · ^ dt.

Also,

◆
@

@t

(dx1 ^ · · · ^ dt) = �dx1 ^ · · · ^ dz,

hence

d

✓

z
@f

@z

◆

^ ◆
@

@t

(dx1 ^ · · · ^ dt) = z
@2f

@t@z
dx1 ^ · · · ^ dt.

Finally,

◆
@

@z

(dx1 ^ · · · ^ dt) = dx1 ^ · · · ^ dyn�1 ^ dt

hence

d

✓

z
@f

@t

◆

^ ◆
@

@z

(dx1 ^ · · · ^ dt) =

✓

@f

@t
+ z

@2f

@z@t

◆

dx1 ^ · · · ^ dt.

In conclusion,

£X
f

⌦ =
n�1
X

i=1

"

@2f

@yi@xi
dx1 ^ · · · ^ dt� @2f

@xi@yi
dx1 ^ · · · ^ dt

#

+ z
@2f

@t@z
dx1 ^ · · · ^ dt�

✓

@f

@t
+ z

@2f

@z@t

◆

dx1 ^ · · · ^ dt

= �@f
@t

dx1 ^ · · · ^ dt

due to equality of the mixed partial derivatives. This shows that

X⌦
⇧(f) =

£X
f

⌦

⌦
= � @

@t
(f).

Hence X⌦
⇧ = �@/@t.

Proposition 4.2.15. The modular vector field of a b-symplectic manifold (M,Z) is tangent to
Z and transverse to the symplectic leaves inside Z, regardless of the volume form considered on
M .
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Proof. Around a point p 2 Z, we will work in the local coordinates mentioned in Lemma 4.2.14.
With respect to the volume form ⌦ mentioned above, we have

X⌦
⇧ = �@/@t.

Note that Z is given near p by z = 0; so it has coordinates (x1, y1, . . . , xn�1, yn�1, t) whence
X⌦

⇧ is tangent to Z. Moreover, the leaves of Z integrate Ker(dt) (as argued in Remark 4.2.11),
hence they are the level sets of the t-coordinate. Therefore, X⌦

⇧ is transverse to the leaves of
Z, that is

TqL+ span
�

X⌦
⇧(q)

�

= TqZ

for q 2 Z and L the leaf of Z through q. If we consider another volume form ⌦0, then we have
⌦0 = H⌦ for some non-vanishing function H defined near p. Proposition 2.9.6 then shows

X⌦0
⇧ = X⌦

⇧ �Xlog |H|,

so that the modular vector field changes by a Hamiltonian vector field. Since Z ⇢M is a Poisson
submanifold, Hamiltonian vector fields on M are tangent to Z at points q 2 Z (see Proposition
2.10.2). So X⌦0

⇧ is still tangent to Z. Moreover, Hamiltonian vector fields are tangent to the
symplectic leaves of M , and in particular to those inside Z. Therefore, X⌦0

⇧ is still transverse
to the leaves of Z.

The existence of a Poisson vector field transverse to the leaves is rather special and useful.
We will exploit this property later.

4.3 Cohomology theories for b-manifolds

We now discuss some cohomology theories for b-manifolds, and the relations between them. On a
b-manifold (M,Z), we can talk about the usual cohomology theories for the underlying manifold
M , such as de Rham cohomology and Poisson cohomology. However, we can also consider the
complexes of b-forms and b-multivector fields, and study the corresponding cohomology theories.
We will obtain cohomological obstructions for the existence of a b-symplectic structure, similar
to those in symplectic geometry. Since log-symplectic structures can be considered dually as b-
symplectic structures, these obstructions can be used to rule out the existence of a log-symplectic
structure on certain manifolds.

4.3.1 De Rham cohomology and b-cohomology

Recall that on a b-manifold (M,Z) we have the complex of b-di↵erential forms
�

b⌦•(M), bd
�

,
where bd is the b-de Rham di↵erential. The corresponding cohomology groups, denoted by
bH•(M), are the b-de Rham cohomology groups, or b-cohomology groups for short. It turns out
that the b-cohomology groups of a b-manifold (M,Z) are computable in terms of its ordinary
de Rham cohomology groups.

Theorem 4.3.1 (b-Mazzeo-Melrose). On a b-manifold (M,Z), we have the following decompo-
sition for b-cohomology:

bH•(M) ⇠= H•(M)�H•�1(Z).

Proof. Fix an adapted distance function � as in Lemma 4.1.16. We first show that there is a
canonical short exact sequence of complexes

0 �! ⌦•(M)
i�! b⌦•(M)

◆
⇠�! ⌦•�1(Z) �! 0, (4.25)
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where i : ⌦k(M)! b⌦k(M) : ! 7! ! is the inclusion map, and ◆⇠ is contraction with the normal
b-vector field

◆⇠ :
b⌦k(M)! ⌦k�1(Z) : ! = ↵+ d log(�) ^ p⇤(✓) 7! ◆⇠(!|Z) = ✓.

Let us check that the maps involved are chain maps. For ↵ + d log(�) ^ p⇤(✓) 2 b⌦k(M) and
! 2 ⌦k(M), we have

• bd(i(!)) = bd(! + d log(�) ^ 0) = d! = i(d!).

• d(◆⇠(↵+ d log(�) ^ p⇤(✓))) = d✓, whereas

◆⇠
�

bd(↵+d log(�)^p⇤(✓))� = ◆⇠
�

d↵+d log(�)^d(p⇤(✓))� = ◆⇠
�

d↵+d log(�)^p⇤(d✓)� = d✓.

Next, we show that for each k 2 N, the sequence

0 �! ⌦k(M)
i�! b⌦k(M)

◆
⇠�! ⌦k�1(Z) �! 0

is exact.

• The inclusion map i is injective: if i(!) = i(!0) for some !,!0 2 ⌦k(M), then ! = !0 as
b-forms. Hence ! = !0 on M \Z as de Rham forms. Since M \Z ⇢M is dense and !,!0

are continuous, we get equality ! = !0 on all of M .

• Clearly ◆⇠ is surjective, for if ✓ 2 ⌦k�1(Z) is given then ◆⇠
�

d log(�) ^ p⇤(✓)
�

= ✓.

• For ! 2 ⌦k(M), we have ◆⇠(i(!)) = ◆⇠(!) = 0. Indeed, by convention we have !p 2 T ⇤
pZ

for all p 2 Z, and we have seen that T ⇤
pZ = h⇠pi0. Hence Im(i) ⇢ Ker(◆⇠). Conversely, if

↵+ d log(�) ^ p⇤(✓) 2 Ker(◆⇠) then ✓ = 0, so that ↵+ d log(�) ^ p⇤(✓) = ↵ = i(↵).

Hence the sequence (4.25) is exact, and since ⇠ is canonical, so is the sequence. Next, we show
that the sequence (4.25) splits. A splitting is given by

� : ⌦•�1(Z)! b⌦•(M) : ✓ 7! d log(�) ^ p⇤(✓).

Then � is a chain map because

�(d✓) = d log(�) ^ p⇤(d✓) = d log(�) ^ d
�

p⇤(✓)
�

= bd
�

d log(�) ^ p⇤(✓)
�

= bd(�(✓))

and clearly it splits the sequence as

(◆⇠ � �) (✓) = ◆⇠ (d log(�) ^ p⇤(✓)) = ✓.

It is well-known that a short exact sequence of cochain complexes induces a long exact sequence
in cohomology

· · · ��! Hk(M)
i�! bHk(M)

◆
⇠�! Hk�1(Z)

��! Hk+1(M) �! · · · (4.26)

where � is the connecting homomorphism. The long exact sequence (4.26) gives rise to short
exact sequences of the form

0 �! Coker(�)
i�! bHk(M)

◆
⇠�! Im(◆⇠) �! 0. (4.27)

Since ◆⇠ � � = Id⌦k�1(Z) and passing to cohomology is a covariant functor, we also have

◆⇠ � � = IdHk�1(Z).
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This implies that ◆⇠ is surjective and that � is injective. By exactness, the connecting homo-
morphisms � in (4.26) are then zero maps. Hence the short exact sequence (4.27) becomes

0 �! Hk(M)
i�! bHk(M)

◆
⇠�! Hk�1(Z) �! 0.

Since ◆⇠ �� = IdHk�1(Z), this sequence splits (as does any short exact sequence of vector spaces).
We conclude that

bHk(M) = i(Hk(M))� �(Hk�1(Z)) ⇠= Hk(M)�Hk�1(Z),

where the last isomorphism holds by injectivity of i and �.

Example 4.3.2. For (M,Z) = (S2, S1), we have

• bH0(S2) = H0(S2) = R.

• bH1(S2) = H1(S2)�H0(S1) = R.

• bH2(S2) = H2(S2)�H1(S1) = R� R.

• bHk(S2) = 0 for all k � 3.

We obtain some obstructions to the existence of a b-symplectic structure. Proposition 1.2.8
shows that the second de Rham cohomology group of a compact symplectic manifold is nonzero.
The b-analog of this statement is also true.

Proposition 4.3.3. For a compact b-symplectic manifold (M,Z), we have H1(Z) 6= 0 and
consequently bH2(M) 6= 0.

Proof. Let ! = ↵ + d log(�) ^ p⇤(✓) be a b-symplectic form on (M,Z), where ↵ 2 ⌦2(M) and
✓ 2 ⌦1(Z). By Lemma 4.2.5, we know that ✓ is closed and nowhere vanishing. Let ⇧ be the
log-symplectic structure dual to !. Then Z ⇢ M is closed, being the vanishing locus of ⇧n.
Since M is compact, this implies that Z is compact as well. If we would have H1(Z) = 0, then
✓ would be exact: ✓ = dg for some function g 2 C1(Z). Being a continuous function on a
compact domain, the function g has maximum and minimum points on Z, at which ✓ = dg
necessarily vanishes. This is impossible. Then, by Theorem 4.3.1 we have

bH2(M) ⇠= H2(M)�H1(Z) 6= 0.

Above proposition shows for instance that (S4, S3) cannot be log-symplectic.

Proposition 4.3.4. For a compact b-symplectic manifold (M2n, Z) with n � 2, we have
H2(Z) 6= 0 and consequently bH3(M) 6= 0.

Proof. Let ! = ↵ + d log(�) ^ p⇤(✓) be a b-symplectic form on (M2n, Z), where ↵ 2 ⌦2(M)
and ✓ 2 ⌦1(Z). Denote by i : Z ,! M the inclusion map. By Lemma 4.2.5, we know that i⇤↵
and ✓ are closed and that (i⇤↵)n�1 ^ ✓ is a volume form on Z. Assume by contradiction that
H2(Z) = 0. Then i⇤↵ = dµ for some one-form µ 2 ⌦1(Z). Using compactness of M and Stokes’
theorem, we would then get

0 6= Vol(Z) =

Z

Z
(i⇤↵)n�1 ^ ✓ =

Z

Z
(dµ)n�1 ^ ✓ =

Z

Z
d
�

µ ^ (dµ)n�2 ^ ✓�

=

Z

@Z
µ ^ (dµ)n�2 ^ ✓ = 0,

where the last equality holds since @Z = ;. Thus H2(Z) must be nonzero, and Theorem 4.3.1
gives bH3(M) 6= 0.
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There are also obstructions to the existence of a log-symplectic structure in the usual de
Rham cohomology. Their proofs are technical, so we will content ourselves by just stating the
results.

Theorem 4.3.5 ([MO2]). Let (M2n,⇧) be a compact log-symplectic manifold. Then there exists
a class c 2 H2(M) such that cn�1 2 H2n�2(M) is nonzero.

Compare this to Proposition 1.2.8 in symplectic geometry, which states that for a symplectic
manifold M2n, there exists a class c 2 H2(M) such that cn 2 H2n(M) is nonzero. For log-
symplectic structures, that property does not hold in general: there are log-symplectic manifolds
that are compact, connected and non-orientable (RP 2 is such an example) and their top de
Rham cohomology group vanishes altogether. But Theorem 4.3.5 shows that log-symplectic
structures are only a little shy of satisfying this property.

One can use Theorem 4.3.5 to determine which spheres S2n for n > 0 are log-symplectic.
We know that S2 is log-symplectic, by Example 3.1.5. Higher-dimensional spheres cannot be
log-symplectic, by Theorem 4.3.5. So a sphere S2n is log-symplectic if and only if it is symplectic.

The following obstruction is more contrastive with symplectic geometry.

Theorem 4.3.6 ([Cav]). If a compact oriented manifold M2n, with n > 1, admits a bona fide
log-symplectic structure, then there are classes a, b 2 H2(M) such that an�1b 6= 0 and b2 6= 0.

This theorem shows, for instance, that CPn does not admit a bona fide log-symplectic
structure when n > 1. Note however that CPn is symplectic; this can be obtained by symplectic
reduction, for instance.

4.3.2 Poisson cohomology and b-Poisson cohomology

Suppose we are given a b-manifold (M,Z) and a Poisson structure ⇧ on M such that Z ⇢M is
a Poisson submanifold. The Poisson bivector ⇧ induces a di↵erential d⇧ = [⇧, ·] on the graded
algebra of multivector fields X•(M). The cohomology of the complex

· · · �! Xk�1(M)
d⇧�! Xk(M)

d⇧�! Xk+1(M) �! · · ·

is the Poisson cohomology H•
⇧(M) of M . We can also consider the space of b-multivector fields

bX•(M) = �
�^•(bTM)

�

, which consists of the multivector fields on M that are tangent to Z.
Note that

�

bX•(M), d⇧
�

is a subcomplex of (X•(M), d⇧). Indeed, given ⇠ 2 bXk(M), we have
show that [⇧, ⇠] is tangent to Z. Since Z ⇢ M is a Poisson submanifold, we have that ⇧ is
tangent to Z. Also ⇠ is tangent to Z, hence denoting by i : Z ,!M the inclusion map, we have
that ⇠|Z and ⇠ are i-related and that ⇧|Z and ⇧ are i-related. By Lemma 8.3.2 in the appendix,
also [⇧|Z , ⇠|Z ] and [⇧, ⇠] are i-related. In particular, [⇧, ⇠] is tangent to Z. Hence

�

bX•(M), d⇧
�

is a subcomplex of (X•(M), d⇧), or stated otherwise, the inclusion bX•(M) ⇢ X•(M) is a chain
map. The cohomology of the complex

· · · �! bXk�1(M)
d⇧�! bXk(M)

d⇧�! bXk+1(M) �! · · ·

is the b-Poisson cohomology bH•
⇧(M) of M . Similar to what happens in the symplectic case,

we have

Theorem 4.3.7. Let (M2n, Z) be a b-symplectic manifold, with corresponding log-symplectic
structure ⇧. Then the b-Poisson cohomology bH•

⇧(M) is isomorphic to the b-de Rham cohomol-
ogy bH•(M).
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Proof. Considering ⇧ as a section of ^2(bTM), we have a morphism ⇧] : bT ⇤M ! bTM . Taking
exterior powers, we extend it to a map ^k(bT ⇤M)! ^k(bTM). On the level of sections, this is
a C1(M)-linear map, given by

b⌦k(M)! bXk(M) : ↵1 ^ · · · ^ ↵k 7! ⇧](↵1) ^ · · · ^⇧](↵k).

We will denote this map by ⇧] as well. By convention, ⇧](f) = f for all f 2 C1(M) = b⌦0(M).

Claim: Up to sign, the map ⇧] : b⌦k(M)! bXk(M) is a chain map. That is,

⇧](bd⌘) = �d⇧(⇧](⌘)) for all ⌘ 2 b⌦k(M). (4.28)

We prove the claim by induction on the degree k of ⌘. If ⌘ 2 C1(M), then

�d⇧(⇧](⌘)) = �d⇧(⌘) = �[⇧, ⌘] = ◆d⌘⇧ = ⇧](d⌘) = ⇧](bd⌘),

where we used Lemma 8.3.1 in the appendix. Now let ⌘ 2 b⌦1(M). It is enough to check (4.28)
in coordinates near Z (away from Z, the equality (4.28) is true by Lemma 2.8.4). We can choose
coordinates such that

⇧ =
@

@x1
^
✓

y1
@

@y1

◆

+
n
X

i=2

@

@xi
^ @

@yi
,

and in these coordinates,

⌘ = f
dy1
y1

+ gdx1 +
n
X

i=2

(fidyi + gidxi).

On one hand, we get

⇧](bd⌘) = ⇧]
 

df ^ dy1
y1

+ dg ^ dx1 +
n
X

i=2

(dfi ^ dyi + dgi ^ dxi)

!

= ⇧](df) ^⇧]
✓

dy1
y1

◆

+⇧](dg) ^⇧](dx1) +
n
X

i=2

(⇧](dfi) ^⇧](dyi) +⇧](dgi) ^⇧](dxi))

= �⇧](df) ^
✓

@

@x1

◆

+⇧](dg) ^
✓

y1
@

@y1

◆

�
n
X

i=2

⇧](dfi) ^ @

@xi
+

n
X

i=2

⇧](dgi) ^ @

@yi
.

On the other hand,

�d⇧(⇧](⌘)) = �d⇧
✓

f⇧]
✓

dy1
y1

◆◆

� d⇧(g⇧
](dx1))�

n
X

i=2

d⇧(fi⇧
](dyi) + gi⇧

](dxi))

= d⇧

✓

f
@

@x1

◆

� d⇧

✓

gy1
@

@y1

◆

+
n
X

i=2

d⇧

✓

fi
@

@xi

◆

�
n
X

i=2

d⇧

✓

gi
@

@yi

◆

.

Here

d⇧

✓

f
@

@x1

◆

=



⇧, f
@

@x1

�

= [⇧, f ] ^ @

@x1
+ f



⇧,
@

@x1

�

= �⇧](df) ^ @

@x1
� f£

@

@x1

⇧

= �⇧](df) ^ @

@x1
,
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�d⇧
✓

gy1
@

@y1

◆

= �


⇧, gy1
@

@y1

�

= �
✓

[⇧, g] ^ y1
@

@y1
+ g



⇧, y1
@

@y1

�◆

= ⇧](dg) ^ y1
@

@y1
+ g£y1

@

@y1

⇧

= ⇧](dg) ^ y1
@

@y1
,

�d⇧
✓

gi
@

@yi

◆

= �


⇧, gi
@

@yi

�

= �[⇧, gi] ^ @

@yi
� gi



⇧,
@

@yi

�

= ⇧](dgi) ^ @

@yi
+ gi£ @

@y

i

⇧

= ⇧](dgi) ^ @

@yi
,

and

d⇧

✓

fi
@

@xi

◆

= �⇧](dfi) ^ @

@xi
.

So (4.28) is true for b-one forms. Finally, if the formula holds for ⌘ 2 b⌦p(M) and µ 2 b⌦q(M),
then it also holds for ⌘ ^ µ. Indeed, using that bd is a degree 1 derivation of ^, we have

⇧]
�

bd(⌘ ^ µ)
�

= ⇧]
�

bd⌘ ^ µ+ (�1)p⌘ ^ bdµ
�

= ⇧](bd⌘) ^⇧](µ) + (�1)p⇧](⌘) ^⇧](bdµ)

= �d⇧
�

⇧](⌘)
� ^⇧](µ)� (�1)p⇧](⌘) ^ d⇧

�

⇧](µ)
�

= �[⇧,⇧](⌘)] ^⇧](µ)� (�1)p⇧](⌘) ^ [⇧,⇧](µ)]

= �[⇧,⇧](⌘) ^⇧](µ)]

= �d⇧
�

⇧](⌘ ^ µ)
�

.

It follows that we have induced morphisms between cohomology groups

[⇧]] : bHk(M)! bHk
⇧(M) : [⌘] 7! [⇧](⌘)].

Since ⇧ 2 �
�^2(bTM)

�

is non-degenerate, we have that ⇧] : bT ⇤M ! bTM is a bundle
isomorphism. Hence the same holds for its exterior powers ⇧] : ^k �bT ⇤M

� ! ^k �bTM�

. On
the chain level, we get isomorphisms of C1(M)-modules ⇧] : b⌦k(M)! bXk(M). Since passing
to cohomology is functorial, it follows that the induced maps on cohomology

[⇧]] : bHk(M)! bHk
⇧(M)

are isomorphisms.

There are more conceptual ways to see that the claim in above proof is true. For instance,
we know by Lemma 2.8.4 that ⇧] is a chain map (up to sign) on M \Z, so that the claim follows
from continuity arguments.

A more advanced approach is the following. It is well-known that for any Poisson manifold
(N,⇧), the cotangent bundle T ⇤N is a Lie algebroid with anchor map ⇧] : T ⇤N ! TN and Lie
bracket [df, dg] = d{f, g}. Trivially, also TN is a Lie algebroid. By a general fact in the theory
of Lie algebroids, the anchor map ⇧] : T ⇤N ! TN is a Lie algebroid morphism. Therefore,
wedges of its dual give a chain map, where �(^•TN) and �(^•T ⇤N) are endowed with the
induced Lie algebroid di↵erentials, which are the usual Lichnerowicz di↵erential d⇧ and the
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usual de Rham di↵erential d, respectively. Since ⇧] is skew-symmetric, its dual map is �⇧],
and therefore we obtain a chain map

^•(�⇧]) : ��(^•T ⇤N), d
�! �

�(^•TN), d⇧
�

.

Applying this to N = M \ Z, the claim again follows from a continuity argument.

For a log-symplectic manifold (M,Z), the b-Poisson cohomology does not give any additional
information: the b-Poisson cohomology groups are isomorphic to the Poisson cohomology groups
of M .

Theorem 4.3.8. Let (M,Z,⇧) be a log-symplectic manifold. The inclusion bX•(M) ⇢ X•(M)
induces an isomorphism in cohomology, i.e. the Poisson cohomology is isomorphic to the b-
Poisson cohomology:

H•
⇧(M) ⇠= bH•

⇧(M).

The proof of Theorem 4.3.8 relies on the following Poisson version of Cartan’s magic formula:
If ⇧ is a Poisson bivector and � is a closed one-form, then we have the equality

◆� � d⇧ + d⇧ � ◆� = £⇧](�) (4.29)

on multivector fields. The proof of (4.29) is a rather painful calculation that can be found in
the appendix.

Proof. (of Theorem 4.3.8) We will construct linear maps h : X•(M) ! X•�1(M) such that we
obtain a linear map

⇣ : X•(M)! bX•(M) : w 7! w + (d⇧ � h) (w) + (h � d⇧) (w). (4.30)

This map ⇣ is a chain map between the complexes (X•(M), d⇧) and
�

bX•(M), d⇧
�

since

(d⇧ � ⇣)(w) = d⇧(w) + (d⇧ � h � d⇧)(w),
(⇣ � d⇧)(w) = d⇧(w) + (d⇧ � h � d⇧)(w).

Hence it induces a map in cohomology

[⇣] : H•
⇧(M)! bH•

⇧(M) : [w] 7! [⇣(w)] = [w].

On the other hand, we have that the inclusion i : bX•(M) ,! X•(M) is a chain map since
�

bX•(M), d⇧
�

is a subcomplex of (X•(M), d⇧), whence we get a map

[i] : bH•
⇧(M)! H•

⇧(M) : [v] 7! [v].

Clearly, the maps [⇣] and [i] are inverses of each other, which then implies the conclusion that

[i] : bH•
⇧(M)

⇠! H•
⇧(M).

Let E be a tubular neighborhood of Z in M , with projection p : E ! Z. Let E0 ⇢ E be a
smaller tubular neighborhood of Z, and let � be a smooth function supported in E, such that
�|E0 = 1. If ! is the b-symplectic form corresponding with ⇧, then we know that with ! comes
a canonical closed 1-form ✓ 2 ⌦1(Z) which defines the symplectic foliation of Z (see Lemma
4.2.5 and Remark 4.2.11). We now define the operators h by

h : X•(M)! X•�1(M) : h(w) := ◆�p⇤(✓)(�w).
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These are clearly well-defined and linear. It remains to show that ⇣(w) is tangent to Z for all
w 2 X•(M), where ⇣ is defined in (4.30). To do this, we can work in E0 where � ⌘ 1 and hence
we must show that

w +
�

d⇧ � ◆�p⇤(✓)

�

(w) +
�

◆�p⇤(✓) � d⇧
�

(w) 2 bXk(M) (4.31)

for w 2 Xk(M). Note that p⇤(✓) is closed, so that the Cartan formula (4.29) holds:

◆�p⇤(✓) � d⇧ + d⇧ � ◆�p⇤(✓) = £�⇧](p⇤(✓)).

Hence to show (4.31), it su�ces to check that w +£�⇧](p⇤(✓))w 2 bXk(M). First we note that,

since Z ⇢M is a Poisson submanifold, Im(⇧]p) ⇢ TpZ for all p 2 Z, so that ⌫ := �⇧](p⇤(✓)) is
a b-vector field. Next, if ⇠ denotes the normal b-vector field of (M,Z) then we have seen that

![
�

�

�

Z
(⇠) = ◆⇠(!|Z) = ✓.

On the other hand,

![
�

�

�

Z
(⌫|Z) = ![(⌫)|Z = ![

��⇧](p⇤(✓))
�

= p⇤(✓)|Z = i⇤(p⇤(✓)) = (p � i)⇤✓ = ✓,

where we used that ![ = �(⇧])�1 (considering ⇧ as a section of ^2(bTM)), as well as the
convention (4.7). Since ![ is invertible (being a b-symplectic form), this then implies that
⌫|Z = ⇠. With this information, we can now show that for all w 2 Xk(M):

w +£�⇧](p⇤(✓))w = w +
h

�⇧](p⇤(✓)), w
i

= w + [⌫, w] 2 bXk(M).

Choose adapted coordinates (x1, . . . , xn) such that Z is locally given by x1 = 0. We can write

w =
X

i1<···<i
k

wi1···i
k

@

@xi1
^ · · · ^ @

@xi
k

,

⌫ = g1x1
@

@x1
+

n
X

i=2

gi
@

@xi
.

Since ⌫|Z = ⇠ = x1
@
@x1

, we must have that g1|Z = 1 and x1|gi for all 2  i  n. Hence we can
write

⌫ =
n
X

i=1

fix1
@

@xi
,

where f1|Z = 1. We get

w + [⌫, w] =
X

i1<···<i
k

wi1···i
k

@

@xi1
^ · · · ^ @

@xi
k

+£P
n

j=1 fjx1
@

@x

j

0

@

X

i1<···<i
k

wi1···i
k

@

@xi1
^ · · · ^ @

@xi
k

1

A

=
X

i1<···<i
k

wi1···i
k

@

@xi1
^ · · · ^ @

@xi
k

+
X

i1<···<i
k

0

@

n
X

j=1

fjx1
@wi1···i

k

@xj

1

A

@

@xi1
^ · · · ^ @

@xi
k

�
k
X

l=1

X

i1<···<i
k

wi1···i
k

@

@xi1
^ · · · ^ @

@xi
l�1

^£
@

@x

i

l

0

@

n
X

j=1

fjx1
@

@xj

1

A ^ @

@xi
l+1

^ · · · ^ @

@xi
k

.

(4.32)

Here
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• P

i1<···<i
k

⇣

Pn
j=1 fjx1

@w
i1···i

k

@x
j

⌘

@
@x

i1
^ · · · ^ @

@x
i

k

is clearly a b-vector field.

• The last sum in (4.32) for l = 1 gives

X

i1<···<i
k

wi1···i
k

£
@

@x

i1

0

@

n
X

j=1

fjx1
@

@xj

1

A ^ @

@xi2
^ · · · ^ @

@xi
k

=
X

i1<···<i
k

wi1···i
k

0

@

n
X

j=1

@(fjx1)

@xi1

@

@xj

1

A ^ @

@xi2
^ · · · ^ @

@xi
k

=
X

i1<···<i
k

wi1···i
k

0

@

n
X

j=1

✓

@fj
@xi1

x1 + fj
@x1
@xi1

◆

@

@xj

1

A ^ @

@xi2
^ · · · ^ @

@xi
k

,

where
X

i1<···<i
k

wi1···i
k

0

@

n
X

j=1

@fj
@xi1

x1
@

@xj

1

A ^ @

@xi2
^ · · · ^ @

@xi
k

is a b-vector field. So we are left with

X

i1<···<i
k

wi1···i
k

0

@

n
X

j=1

fj
@x1
@xi1

@

@xj

1

A ^ @

@xi2
^ · · · ^ @

@xi
k

=
X

1<i2<···<i
k

w1i2···i
k

0

@

n
X

j=1

fj
@

@xj

1

A ^ @

@xi2
^ · · · ^ @

@xi
k

• Note that for l > 1:

£
@

@x

i

l

0

@

n
X

j=1

fjx1
@

@xj

1

A =
n
X

j=1

✓

@fj
@xi

l

x1 + fj
@x1
@xi

l

◆

@

@xj
=

n
X

j=1

@fj
@xi

l

x1
@

@xj
,

where the last equality holds since il > 1 for l > 1. Hence the last sum in (4.32) for l > 1
gives a b-vector field.

So omitting all terms in (4.32) that are for sure b-vector fields, we are left with

X

i1<···<i
k

wi1···i
k

@

@xi1
^ · · · ^ @

@xi
k

�
X

1<i2<···<i
k

w1i2···i
k

0

@

n
X

j=1

fj
@

@xj

1

A ^ @

@xi2
^ · · · ^ @

@xi
k

. (4.33)

To show that this is a b-vector field, we consider its terms containing @/@x1:

X

1<i2<···<i
k

w1i2···i
k

@

@x1
^ @

@xi2
^ · · · ^ @

@xi
k

�
X

1<i2<···<i
k

w1i2···i
k

f1
@

@x1
^ @

@xi2
^ · · · ^ @

@xi
k

=
X

1<i2<···<i
k

(w1i2···i
k

� w1i2···i
k

f1)
@

@x1
^ @

@xi2
^ · · · ^ @

@xi
k

(4.34)

Since f1|Z = 1, we have that (4.34) vanishes on Z, so that the coe�cients w1i2···i
k

�w1i2···i
k

f1 are
smooth multiples of x1. This shows that also the remaining terms (4.33) are b-vector fields.
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Recall that the inclusion bX•(M) ,! X•(M) is induced by the anchor map ⇢ : bTM ! TM ,
whereas the inclusion ⌦•(M) ,! b⌦•(M) is induced by its dual ⇢⇤ : T ⇤M ! bT ⇤M . Hence, in
conclusion of this section, for a log-symplectic structure (M,Z,⇧) we have a diagram of vector
bundles and vector bundle maps

bTM TM

bT ⇤M T ⇤M

⇢

�
⇢�1(⇧)

�
]

⇢⇤

⇧]

.

On the level of sections, it becomes a diagram of complexes with chain maps (up to sign)

bX•(M) X•(M)

b⌦•(M) ⌦•(M)

�
⇢�1(⇧)

�
]

⇧]

,

two of which induce an isomorphism in cohomology

bH•
⇧(M) H•

⇧(M)

bH•(M) H•(M)

⇠

⇠

.
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Chapter 5

The structure of log-symplectic
manifolds near their singular loci

In light of the objectives of the thesis, this chapter contains the main results. It aims to
describe log-symplectic structures (M,Z,⇧) semilocally, in a neighborhood of the singular locus
Z. Following [BOT, Section 4.1], we present a normal form model for log-symplectic structures
(M,Z,⇧), valid in a tubular neighborhood of Z. Next, we will address log-symplectic extensions
of corank-one Poisson structures. In [GMP2], one obtained necessary and su�cient conditions
for a corank-one Poisson structure ⇧Z on Z to be induced by a log-symplectic structure. We
will see to what extent such log-symplectic extensions are unique, presenting statements from
[GMP2] complemented by some original observations and proofs.

5.1 Cosymplectic structures revisited

We first elaborate on the brief introduction to cosymplectic structures given in the previous
chapter, as these will play a key role in what follows. Cosymplectic structures show up naturally
when dealing with corank-one Poisson structures. This is demonstrated by the next theorem,
which is mentioned in [MO], and which serves as a refinement of [GMP1, Proposition 18].

Theorem 5.1.1. Let M be a manifold. There is a one-to-one correspondence between cosym-
plectic structures on M and regular corank-one Poisson structures on M , endowed with a trans-
verse Poisson vector field.

Proof. First assume we are given a pair (⇧, X) 2 X2(M)⇥X(M), where ⇧ is a Poisson bivector
and X is a Poisson vector field transverse to the leaves. We will construct a cosymplectic
structure (↵,!) 2 ⌦1(M)⇥ ⌦2(M) that is uniquely defined by the following rules:

8

>

>

>

>

<

>

>

>

>

:

Ker(↵p) = TpL for all p 2M, where L is the symplectic leaf through p.

↵(X) = 1.

!|Ker(↵) = �
�

⇧|Ker(↵)

��1
.

◆X! = 0.

(5.1)

Let us first construct ↵ 2 ⌦1(M). The vector field X is a global trivialisation of the normal
bundle TM/TF , where F is the symplectic foliation of ⇧. Hence also the conormal bundle
(TM/TF)⇤ = Ann(TF) is trivial, so it has a global trivialisation � 2 ⌦1(M). Note that
Ker(�p) = TpL for all p 2 M , where L is the leaf through p. Now �(X) = f , for some
f 2 C1(M) that is nowhere vanishing. Defining ↵ := (1/f)�, we have Ker(↵p) = TpL for all
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p 2M , where L is the symplectic leaf through p. And ↵(X) = 1, so ↵ is as desired in (5.1).
Next, we construct ! 2 ⌦2(M). It is well-known that the complex ⌦•(F) of di↵erential forms
along the leaves of F fits in a short exact sequence of complexes

0 �! ⌦•
F (M) �! ⌦•(M)

r�! ⌦•(F) �! 0, (5.2)

where ⌦•
F (M) is the kernel of the map r, which restricts di↵erential forms on TM to TF . The

family of symplectic forms on the leaves of F defines a foliated di↵erential form !F 2 ⌦2(F),
and exactness of the sequence (5.2) implies in particular that we can find ⌘ 2 ⌦2(M) such
that ⌘ extends !F , i.e. r(⌘) = !F . Now ◆X⌘ is a one-form, which we call � 2 ⌦1(M).
Define ! := ⌘ + � ^ ↵, where ↵ is as constructed before. Since ↵ 2 �(Ann(TF)), we have
r(!) = r(⌘) = !F . Moreover, we have

◆X! = ◆X⌘ + (◆X�)↵� � (◆X↵) = ◆X⌘ � � = 0,

since ◆X↵ = 1 and ◆X� = ⌘(X,X) = 0 by skew-symmetry. Hence ! satisfies

(

!|Ker(↵) = �
�

⇧|Ker(↵)

��1

◆X! = 0
,

as required in (5.1). We now show that the pair (↵,!) is a cosymplectic structure on M ,
following the characterization (4.17). We have by construction that ↵ is nowhere vanishing and
that !|Ker(↵) is non-degenerate, hence we only have to show that ↵ and ! are closed. To show
that d↵ = 0, we only have to check that d↵ vanishes on pairs of the form (Xg, Xh) and (X,Xg),
for g, h 2 C1(M). We have

d↵(Xg, Xh) = Xg(↵(Xh))�Xh(↵(Xg))� ↵([Xg, Xh])

= Xg(↵(Xh))�Xh(↵(Xg))� ↵
�

X{g,h}
�

= 0,

using Lemma 2.7.3 in the second equality. The last equality holds since Hamiltonian vector
fields are tangent to the leaves of F and ↵ 2 �(Ann(TF)). Next, we have

d↵(X,Xg) = X(↵(Xg))�Xg(↵(X))� ↵([X,Xg]). (5.3)

As before, ↵(Xg) = 1, and also Xg(↵(X)) = 0 since ↵(X) = 1. To inspect the last term in
(5.3), we compute for h 2 C1(M):

[X,Xg](h) = X(Xg(h))�Xg(X(h))

= X ({g, h})� {g,X(h)}
= {X(g), h}+ {g,X(h)}� {g,X(h)}
= {X(g), h}
= XX(g)(h),

using that X is a Poisson vector field. Hence [X,Xg] = XX(g) and in particular [X,Xg] is
tangent to the leaves of F , so that ↵([X,Xg]) = 0. So the right hand side in (5.3) is zero, and
we conclude that ↵ is closed. Similarly, to show that ! is closed, we only have to check that d!
vanishes on triples of the form (Xg, Xh, Xk) and (X,Xg, Xh) for g, h, k 2 C1(M). First of all,
we have

d!(Xg, Xh, Xk) = dF!F (Xg, Xh, Xk) = 0,
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using that !F is a foliated two-form that is closed for the leafwise de Rham di↵erential dF .
Next, we note that

!p (Xg(p), Xh(p)) = (!L)p (Xg(p), Xh(p))

=
⇣

![L

⌘

p

⇣

⇧]p(dpg)
⌘

(Xh(p))

=
⇣

![L

⌘

p

⇣

(⇧L)
]
p(dp(g|L))

⌘

(Xh(p))

= �(dp(g|L))(Xh(p))

= �(dpg)(Xh(p))

= � (Xh(g)) (p)

= {g, h}(p),
where L is the leaf through p, !L is the symplectic form on L and ⇧L is the non-degenerate
Poisson structure induced on L. This computation shows that !(Xg, Xh) = {g, h}. Therefore,

d!(X,Xg, Xh) = X(!(Xg, Xh))�Xg(!(X,Xh)) +Xh(!(X,Xg))

� ! ([X,Xg], Xh) + ! ([X,Xh], Xg)� ! ([Xg, Xh], X)

= X({g, h})�Xg (◆X!(Xh)) +Xh (◆X!(Xg))

� ! �XX(g), Xh

�

+ !
�

XX(h), Xg
�

+ ◆X!(X{g,h})

= X({g, h})� {X(g), h}� {g,X(h)}
= 0,

where we used that ◆X! = 0 and that X is a Poisson vector field. Hence also ! is closed, and
we conclude that (↵,!) 2 ⌦1(M)⇥ ⌦2(M) is a cosymplectic structure.

For the converse, we start with a cosymplectic structure (↵,!) 2 ⌦1(M) ⇥ ⌦2(M). These
data determine a codimension-one symplectic foliation (F ,!F ) on M , as follows:

• The one-form ↵ 2 ⌦1(M) is nowhere vanishing and closed, hence Ker(↵) is an involutive
corank-one distribution. Indeed, if X,Y 2 �(Ker(↵)) then

0 = d↵(X,Y ) = X(↵(Y ))� Y (↵(X))� ↵([X,Y ]) = �↵([X,Y ]),

so that [X,Y ] 2 �(Ker(↵)). Frobenius’ theorem gives a uniquely determined codimension-
one foliation F of M integrating the distribution Ker(↵).

• By the characterization (4.17), we know that !|Ker(↵) is non-degenerate, hence ! pulls
back to a symplectic form on each leaf of F . Therefore, ! defines a leafwise symplectic
form !F .

In [Vai], one shows that there exists a unique Poisson structure ⇧ on M inducing the given
symplectic foliation (F ,!F ). Namely, we can define a Poisson bracket on C1(M) by

{f, g}(x) := !L
�

XL
f , X

L
g

�

(x),

where L is the leaf passing through x and XL
f , X

L
g 2 X(L) are the Hamiltonian vector fields

computed with the symplectic structure !L on L. Evidently, ⇧ is of corank one.
Next, we attach to the pair (↵,!) a vector field X 2 X(M), uniquely defined by the rules

(

◆X! = 0

↵(X) = 1
. (5.4)
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To construct this vector field, we proceed as follows. The one-form ↵ 2 ⌦1(M) trivializes
the conormal bundle (TM/TF)⇤, hence also the normal bundle TM/TF is trivial. So we can
choose Y 2 X(M) such that Y is nowhere tangent to the leaves of F . Rescaling Y , we can
make sure that ↵(Y ) = 1. We now have that ◆Y ! is a one-form on M , which we call �. Define
X := Y +⇧](�). Since ⇧](�) is tangent to the leaves of F , and ↵ 2 �(Ann(TF)), we still have
↵(X) = ↵(Y ) = 1. But we also claim that ◆X! = 0. Indeed, we will show that

◆
⇧]

p

(�
p

)
!p = ��p

and to do this, we have to show equality on the vectors Yp and Vp, where Vp is an arbitrary
vector in TpL and L is the leaf through p. We have

⇣

◆
⇧]

p

(�
p

)
!p

⌘

(Yp) = �
�

◆Y
p

!p
�

⇣

⇧]p(�p)
⌘

= ��p
⇣

⇧]p(�p)
⌘

= �⇧p(�p,�p) = 0,

and also
��p(Yp) = �

�

◆Y
p

!p
�

(Yp) = �!p(Yp, Yp) = 0.

Next, using that L ⇢M is a Poisson submanifold with induced non-degenerate Poisson structure
⇧L satisfying ⇧L = �!�1

L , we have

⇣

◆
⇧]

p

(�
p

)
!p

⌘

(Vp) = !p

⇣

⇧]p(�p), Vp

⌘

=
⇣

![L

⌘

p

⇣

⇧]p(�p)
⌘

(Vp)

=
⇣

![L

⌘

p

⇣

(⇧]L)p(
e�p)

⌘

(Vp)

= �e�p(Vp)

= ��p(Vp),

where we denoted by e� the pullback of � to the leaf L. So we showed that ◆X! = 0, and
therefore X 2 X(M) is as desired in (5.4). For sure, X is transverse to the leaves of ⇧ since
↵(X) = 1 is nowhere zero. It remains to show that X is Poisson, i.e. that £X⇧ = 0. Since ⇧ is
constructed out of ↵ and !, it su�ces to show that £X↵ = £X! = 0. This is readily checked,
since by Cartan’s magic formula

£X↵ = d(◆X↵) + ◆Xd↵ = d(1) + 0 = 0

and
£X! = d(◆X!) + ◆Xd! = 0,

using that ↵(X) = 1 and ◆X! = 0, along with the fact that ↵ and ! are closed. So the pair
(⇧, X) 2 X2(M) ⇥ X(M) indeed consists of a corank-one Poisson structure and a transverse
Poisson vector field. At last, the assignments described above are clearly inverse to each other,
and therefore the theorem is proved.

So the duality between two-forms and bivectors is rather subtle. In the non-degenerate case,
there is a one-to-one correspondence between non-degenerate Poisson bivectors and symplectic
forms. When the rank is not maximal, the duality is less straightforward. A cosymplectic pair
(↵,!) 2 ⌦1(M) ⇥ ⌦2(M) induces a corank-one Poisson structure ⇧ on M ; there are however
several such pairs inducing ⇧. The ambiguity disappears once we specify a direction transverse
to the leaves.

With Theorem 5.1.1 in mind, we obtain the following addendum to Lemma 4.2.5.
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Lemma 5.1.2. Let ! be a b-symplectic form on (M,Z), and let ⇧ be the dual log-symplectic
structure. As in Lemma 4.2.5, we can decompose

! = ↵+ d log(�) ^ p⇤(✓), (5.5)

for some choice of distance function �. Here ✓ 2 ⌦1(Z) and ↵ 2 ⌦2(M) are closed, and the
map p : E ! Z is the projection in a tubular neighborhood of Z. Let i : Z ,! M denote the
inclusion and set e↵ := i⇤↵. Then (✓, e↵) is the cosymplectic structure on Z corresponding with
the pair

�

⇧|Z ,⇧](d log(�))|Z
�

.

Proof. For short, we write ⇧Z := ⇧|Z and

X := ⇧](d log(�)) = �(![)�1(d log(�)),

so that ![(X) = �d log(�). We have to check that the conditions (5.1) hold, i.e. that

8

>

>

>

>

<

>

>

>

>

:

Ker(✓p) = TpL for all p 2 Z, where L is the symplectic leaf of ⇧Z through p.

✓(X|Z) = 1.

e↵|Ker(✓) = �
�

⇧Z |Ker(✓)

��1
.

◆X|
Z

e↵ = 0.

(5.6)

By Remark 4.2.11, we already know that the first and third condition in (5.6) are satisfied. In
Theorem 4.3.7, it is shown that ⇧]�d = �d⇧�⇧], which implies that ⇧] takes closed b-one-forms
to Poisson b-vector fields. Hence, X is Poisson and tangent to Z, which implies that X|Z is
Poisson for ⇧Z since (Z,⇧Z) is a Poisson submanifold of (M,⇧). Restricting (5.5) to Z and
contracting with X|Z gives

◆X|
Z

e↵+ ◆X|
Z

d log(�)|Z✓ � d log(�)|Z✓(X|Z) = �d log(�)|Z ,

hence
◆X|

Z

↵̃+ ◆X|
Z

d log(�)|Z✓ = d log(�)|Z(✓(X|Z)� 1). (5.7)

Recall that at p 2 Z, we have the direct sum decomposition

bT ⇤
pM = T ⇤

pZ � h(d log(�))pi.

Since at each point p 2 Z, the left hand side of (5.7) lives in T ⇤
pZ and the right hand side lives

in h(d log(�))pi, both must be zero. Since d log(�)|Z is non-vanishing, we hence have

✓(X|Z) = 1 and ◆X|
Z

↵̃+ ◆X|
Z

d log(�)|Z✓ = 0.

Now

◆X|
Z

d log(�)|Z = hd log(�)|Z , X|Zi = hd log(�)|Z ,⇧](d log(�))|Zi
= hd log(�)|Z , (⇧Z)

](d log(�)|Z)i = ⇧Z (d log(�)|Z , d log(�)|Z) = 0

by skew-symmetry. Hence

✓(X|Z) = 1 and ◆X|
Z

↵̃ = 0.

This shows that X|Z is transverse to the leaves of Z, and that the second and fourth condition
in (5.6) are satisfied.
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5.2 Normal form

We now present a semilocal normal form for orientable log-symplectic structures, which is valid
on a neighborhood of the singular locus. The theorem appeared in [BOT, Section 4.1].

Theorem 5.2.1. Let ⇧ be a log-symplectic structure on an orientable manifold M2n, with
singular locus Z 6= ;. Let X be a modular vector field on M , for some choice of volume form.
We then have:

i) ⇧Z := ⇧|Z is a regular corank-one Poisson structure on Z and XZ := X|Z is a transverse
Poisson vector field. Moreover, there is a tubular neighborhood O ⇢ Z ⇥R of Z, in which
Z corresponds to t = 0, such that

⇧|O = XZ ^ t
@

@t
+⇧Z . (5.8)

ii) Let (✓, ⌘) 2 ⌦1(Z) ⇥ ⌦2(Z) be the cosymplectic structure corresponding to (⇧Z ,�XZ).
Then the b-symplectic form ! dual to ⇧ can be written as

!|O =
dt

t
^ ✓ + ⌘.

We already know that the first sentence of statement i) is true. Indeed, ⇧Z is a corank-one
Poisson structure on Z by Corollary 3.2.3, and we know that X is a Poisson vector field that is
tangent to Z and transverse to the leaves inside Z by Proposition 4.2.15. The fact that XZ is a
Poisson vector field on (Z,⇧Z) is merely a consequence of (Z,⇧Z) being a Poisson submanifold
of (M,⇧). Indeed, let i : Z ,!M denote the inclusion. Since ⇧ and X are tangent to Z, we have
that ⇧Z and ⇧ are i-related, and that XZ and X are i-related. By Lemma 8.3.2, also [XZ ,⇧Z ]
and [X,⇧] are i-related. In particular, [X,⇧] is tangent to Z. Since dpi : ^2TpZ ! ^2TpM is
injective for all p 2 Z, there exists a unique bivector on Z that is i-related with [X,⇧]. Since
both [XZ ,⇧Z ] and [X,⇧]|Z are i-related with [X,⇧], we must have that [XZ ,⇧Z ] = [X,⇧]|Z .
Hence

£X
Z

⇧Z = [XZ ,⇧Z ] = [X,⇧]|Z = (£X⇧) |Z = 0,

since X is a Poisson vector field on (M,⇧). We now start the actual proof of Theorem 5.2.1.

Proof. (of Theorem 5.2.1)

Step 1
We start by constructing a convenient tubular neighborhood U of Z.

Let µ be a volume form on M , and let ⇠ be its dual 2n-vector field. Since ^2nTM is a
line bundle, we have ⇧n = t⇠ for some t 2 C1(M) that is a defining function for Z. Note
that

h⇧n, µi = ht⇠, µi = th⇠, µi = t,

since µ and ⇠ are duals. Since t vanishes linearly on Z, we have that t is a submersion
along Z and that 0 is a regular value of t. Now let U ⇢ Z ⇥R be a tubular neighborhood
of Z, where we choose some trivialization of the normal bundle NZ (note indeed that the
normal bundle of Z is trivial: M is orientable, and so is Z since it has a volume form
by Lemma 4.2.5). Let r : U ! Z denote the projection map in the normal bundle. We
claim that the map (r, t) : U ! Z ⇥R is a local di↵eomorphism around Z. To show this,
it su�ces to check that its derivative is an isomorphism at points p 2 Z, by the inverse
function theorem.
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• We see that dp(r, t) = (dpr, dpt) is surjective, since r is a submersion and t is a
submersion along Z.

• By the regular value theorem, we know that TpZ = Tp
�

t�1(0)
�

= Ker(dpt). Hence

Ker (dp(r, t)) = Ker (dpr, dpt) = Ker(dpr) \Ker(dpt) = Ker(dpr) \ TpZ.

Since dpr|T
p

Z = IdT
p

Z , this shows that dp(r, t) is injective.

Shrinking U if necessary, we obtain that U ⇢ Z ⇥ R is the desired tubular neighborhood
of Z with global coordinate t in the fibers, such that Z corresponds to t = 0.1

Step 2
In this neighborhood U , we can write

⇧|U = Yt ^ @

@t
+ wt,

with dt(Yt) = w]t(dt) = 0. Since ⇧ is log-symplectic, we have that ⇧ is tangent to Z and
that ⇧n vanishes linearly on Z. Therefore, necessarily Yt = tVt for some vector field Vt on
U satisfying dt(Vt) = 0. Hence

⇧|U = Vt ^ t
@

@t
+ wt.

Denote by X the modular vector field corresponding to the volume form µ.

Claim: Vt = X|U .
Choose f 2 C1(U). We compute

⇧|U (df, dt) =
✓

Vt ^ t
@

@t
+ wt

◆

(df, dt)

=

✓

Vt ^ t
@

@t

◆

(df, dt)

=

�

�

�

�

df(Vt) df
�

t @@t
�

dt(Vt) dt
�

t @@t
�

�

�

�

�

=

�

�

�

�

df(Vt) df
�

t @@t
�

0 t

�

�

�

�

= tVt(f). (5.9)

On the other hand,

{f, t} = Xf (t) = £X
f

t = £X
f

h⇧n, µi = h£X
f

⇧n, µi+ h⇧n,£X
f

µi. (5.10)

Here, we note:

• Since Hamiltonian vector fields are Poisson, we have £X
f

⇧ = 0. Therefore also
£X

f

⇧n = 0 by induction, using that £X
f

is a derivation of the wedge product.

1To justify that U is as we want, we can argue as follows. For local coordinates (V, x1, . . . , x2n�1) on Z, we
want (r⇤(x1), . . . , r

⇤(x2n�1), t) to be coordinates on r�1(V ) ⇢ U . That is, we want

(r⇤(x1), . . . , r
⇤(x2n�1), t) = (x1 � r, . . . , x2n�1 � r, t)

to be a di↵eomorphism into R2n. This is the case, since it is a composition of the di↵eomorphisms (r, t) and
(x1, . . . , x2n�1, Id).
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• By definition of the modular vector field X, we have

£X
f

µ = X(f)µ = (£Xf)µ.

Hence, putting together (5.9) and (5.10), we get

tVt(f) = ⇧|U (df, dt) = {f, t} = h⇧n, (£Xf)µi = (£Xf)t = X(f)t.

This implies that Vt(f) = X(f) on the locus (U \ Z) $ {t 6= 0}, so that by continuity
Vt(f) = X(f) on all of U . This proves the claim that Vt = X|U . In conclusion, we have

⇧|U = Vt ^ t
@

@t
+ wt,

where w0 = ⇧|Z = ⇧Z and V0 = X|Z = XZ .

Step 3
Since ⇧Z is a corank-one Poisson bivector and XZ is a Poisson vector field transverse to
the leaves of Z, we get a bivector ⇧0 on U defined by

⇧0 = XZ ^ t
@

@t
+⇧Z ,

which is seen to be log-symplectic by the same reasoning as in Example 3.2.6. (Note that
here we consider XZ and ⇧Z as being defined on U by taking their horizontal lifts). The
log-symplectic structures ⇧|U and ⇧0 define non-degenerate b-bivector fields, which can
be inverted. Let ! = �⇧|�1

U and !0 = �⇧�1
0 denote the b-symplectic forms on U that are

inverse to ⇧|U and ⇧0, respectively.

Claim: !|Z = !0|Z .
We can decompose

!0 =
dt

t
^ ↵+ �,

where ↵ 2 ⌦1(Z) and � 2 ⌦2(Z) are independent of t (we write ↵ and � for short instead
of r⇤(↵) and r⇤(�), where r : U ! Z is the projection). By Lemma 5.1.2, we have that
(↵,�) is the cosymplectic structure corresponding with the pair

✓

⇧0|Z , ⇧]0
✓

dt

t

◆

�

�

�

�

Z

◆

= (⇧Z ,�XZ) ,

so that in fact

!0 =
dt

t
^ ✓ + ⌘.

Next, we have the equality of b-bivector fields

⇧|Z = V0 ^
✓

t
@

@t

◆

�

�

�

�

Z

+ w0 = XZ ^
✓

t
@

@t

◆

�

�

�

�

Z

+⇧Z = ⇧0|Z 2 �(^2(bTM)|Z),

and since inverting is a pointwise operation, this implies that

!|Z = !0|Z =
dt

t

�

�

�

�

Z

^ ✓ + ⌘. (5.11)

94



Step 4
By virtue of the equation (5.11), we can apply the local b-Moser theorem 4.2.7, which
gives a di↵eomorphism � : O0 ! O1 between neighborhoods of Z such that �|Z = IdZ and
�⇤! = !0. By functoriality, � should push forward ⇧0 to ⇧: let us check this explicitly.
For vector fields X,Y we have

(�⇤!)[ (X)(Y ) = (�⇤!) (X,Y ) = !(�⇤(X),�⇤(Y )) = ![(�⇤(X))(�⇤(Y ))

=
⇣

![ � �⇤
⌘

(X)(�⇤(Y )) = �⇤
⇣⇣

![ � �⇤
⌘

(X)
⌘

(Y )

=
⇣

�⇤ � ![ � �⇤
⌘

(X)(Y ),

so that (�⇤!)[ = �⇤ � ![ � �⇤. Then we have for one-forms ↵1,↵2 that

(�⇤⇧0)(↵1,↵2) = ⇧0(�
⇤↵1,�

⇤↵2) =
D

⇧]0(�
⇤↵1),�

⇤↵2

E

= �
⌧

⇣

![0

⌘�1
(�⇤↵1),�

⇤↵2

�

= �
⌧

⇣

(�⇤!)[
⌘�1

(�⇤↵1),�
⇤↵2

�

= �
⌧✓

(�⇤)
�1 �

⇣

![
⌘�1 � (�⇤)�1

◆

(�⇤↵1),�
⇤↵2

�

= �
⌧✓

(�⇤)
�1 �

⇣

![
⌘�1

◆

(↵1),�
⇤↵2

�

= �
⌧

(��1)⇤

✓

⇣

![
⌘�1

(↵1)

◆

,�⇤↵2

�

= �
⌧

⇣

![
⌘�1

(↵1),
�

��1
�⇤

(�⇤↵2)

◆

= �
⌧

⇣

![
⌘�1

(↵1),↵2

�

=
D

⇧](↵1),↵2

E

= ⇧(↵1,↵2).

So indeed �⇤⇧0 = ⇧. Now note that

�⇤ (⇧0) = �⇤ (XZ) ^ �⇤
✓

t
@

@t

◆

+ �⇤(⇧Z)

= (�|Z)⇤ (XZ) ^ �⇤
✓

t
@

@t

◆

+ (�|Z)⇤ (⇧Z)

= XZ ^ t
@

@t
+⇧Z ,

where we use Lemma 5.3.5 in the last equality to see that �⇤ preserves the normal b-vector
field. Hence, setting O := O1 yields the conclusion i) of the theorem, namely

⇧|O = �⇤⇧0 = XZ ^ t
@

@t
+⇧Z .

Taking inverses in this equality then also yields conclusion ii) of the theorem:

!|O =
dt

t
^ ✓ + ⌘.
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Remark 5.2.2. We should stress that the expression (5.8) is very much subject to the choice of
volume form. Of course, the modular vector field X requires a choice of volume form, but also
the coordinate t depends on the chosen volume form µ, in a more disguised way, as t = h⇧n, µi.

5.3 Extensions

Up until now, we always started from a given log-symplectic structure (M,Z,⇧) and investigated
the local picture near the singular locus Z. In particular, we saw that ⇧ induces a corank-one
Poisson structure on Z. Conversely, we can ask: given a b-manifold (M,Z) with a corank-one
Poisson structure ⇧Z on Z, is ⇧Z induced by a log-symplectic structure on M? And if so, to
what extent are such log-symplectic extensions of ⇧Z unique?

5.3.1 Existence of extensions

We give necessary and su�cient conditions for a corank-one Poisson structure ⇧Z on Z to be
induced by a log-symplectic structure on a tubular neighborhood of Z. We will restrict ourselves
to orientable manifolds. This theorem is a combination of [GMP2, Theorem 50] and [GMP1,
Proposition 18].

Theorem 5.3.1. Let (M2n, Z) be a b-manifold, with M and Z orientable, and let ⇧Z be a
corank-one Poisson structure on Z. The following are equivalent:

i) There exist a tubular neighborhood U of Z and a log-symplectic structure ⇧ on U that
induces ⇧Z .

ii) There exists a Poisson vector field on Z that is transverse to the symplectic leaves.

iii) The foliation of Z has a closed defining one-form and a closed two-form that pulls back
to the symplectic form on each leaf.

Proof. We will prove that i)) ii)) iii)) i).

• First assume that there exist a tubular neighborhood U ⇢ M of Z and a log-symplectic
structure ⇧ on U inducing ⇧Z . Since M is orientable, we can choose a volume form
µ on U and consider the modular vector field X associated with µ and ⇧. Then X is
a Poisson vector field on U (see Theorem 2.9.5) that is tangent to Z and transverse to
the symplectic leaves of Z (see Proposition 4.2.15). Restricting X to Z gives the desired
transverse Poisson vector field on (Z,⇧Z).

• Let XZ be a Poisson vector field for (Z,⇧Z) that is transverse to the symplectic leaves.
The pair (⇧Z , XZ) determines a cosymplectic structure (↵,!) 2 ⌦1(Z)⇥ ⌦2(Z) on Z by
Theorem 5.1.1. Then ↵ is a closed defining one-form for the foliation of Z, and ! is a
closed two-form that pulls back to the symplectic form on each leaf, as is clear from (5.1).

• Assume that ↵ 2 ⌦1(Z) is a closed defining one-form for the foliation on Z, and that
! 2 ⌦2(Z) is a closed two-form that pulls back to the symplectic form on each leaf.
Then ↵ is nowhere vanishing, and !|Ker(↵) is non-degenerate, which by (4.17) implies that
↵ ^ !n�1 is nowhere vanishing. Let U ⇢ NZ be a tubular neighborhood of Z in the
normal bundle NZ, and let p : U ! Z be the projection. By orientability of M and Z,
the normal bundle NZ is trivial; let t be a global coordinate in the fibers. We define a
b-form e! 2 b⌦2(U) by

e! = p⇤(!) +
dt

t
^ p⇤(↵). (5.12)
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We claim that e! is a b-symplectic form. Clearly, e! is closed since

de! = d(p⇤(!)) +
dt

t
^ d(p⇤(↵)) = p⇤(d!) +

dt

t
^ p⇤(d↵) = 0,

using that ↵ and ! are closed. To show that e! is non-degenerate, we have to check that

e!n = n
dt

t
^ p⇤(↵) ^ (p⇤(!))n�1

is a nowhere vanishing b-form. Assume by contradiction that e!n
q = 0 for some q 2 U .

Then in particular,

0 =
⇣

◆t @

@t

e!n
⌘

q
=
h

p⇤(↵) ^ (p⇤(!))n�1
i

q
=
⇥

p⇤(↵ ^ !n�1)
⇤

q
,

and this implies that
�

↵ ^ !n�1
�

p(q)
= 0 since dqp : TqU ! Tp(q)Z is surjective. So

we run into a contradiction, and we conclude that e! is a b-symplectic form on U . Let
⇧ 2 �(^2TU) be its dual log-symplectic structure. In Remark 4.2.11, we showed that the
symplectic foliation on Z determined by the pair (↵,!) is exactly the symplectic foliation
induced by ⇧|Z 2 �(^2TZ). That is, we have corank-one Poisson structures ⇧Z and ⇧|Z
on Z inducing the same symplectic foliation of Z. By Proposition 2.12.17, they must
coincide: ⇧Z = ⇧|Z . Hence ⇧Z is induced by the log-symplectic structure ⇧ on U , which
finishes the proof.

Remark 5.3.2. If we are only given the data (Z,⇧Z), then we can thicken Z toM := Z⇥(�✏, ✏)
and construct a log-symplectic structure on M inducing ⇧Z as in the last point of above proof,
provided that the conditions of Theorem 5.3.1 are satisfied.

Example 5.3.3 ([GMP2]). Let Z = S3 and ⇧Z any corank-one Poisson structure on Z. Assume
that the induced symplectic foliation on Z would have a closed defining one-form ↵ 2 ⌦1(Z).
Since H1(Z) = 0, necessarily ↵ is exact: ↵ = df for some f 2 C1(Z). Since Z is compact, the
function f reaches maximum and minimum values, so that df has zeros on Z. Hence ↵ does
vanish at some points, and therefore it cannot define a corank-one foliation. By contradiction,
we conclude that S3 cannot be the singular hypersurface of a log-symplectic manifold.

Example 5.3.4 ([GMP2]). Consider Z = T3 with coordinates ✓1, ✓2, ✓3. Let a, b 2 R be fixed
constants. The map

f : T3 ! R : (✓1, ✓2, ✓3) 7! ✓3 � a✓1 � b✓2

is a submersion, and therefore it gives rise to a codimension-one foliation F on T3 whose leaves
are the di↵erent f -fibers

f�1(k) = {(✓1, ✓2, ✓3) : ✓3 = a✓1 + b✓2 + k}, k 2 Im(f) ⇢ R.

The foliation F is defined by the one-form ↵ 2 ⌦1(T3), given by

↵ =
a

a2 + b2 + 1
d✓1 +

b

a2 + b2 + 1
d✓2 � 1

a2 + b2 + 1
d✓3.

Indeed, clearly ↵ is non-vanishing, and for any leaf L = f�1(k) we have

i⇤L↵ =
a

a2 + b2 + 1
d✓1 +

b

a2 + b2 + 1
d✓2 � 1

a2 + b2 + 1
d(a✓1 + b✓2 + k)
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=
a

a2 + b2 + 1
d✓1 +

b

a2 + b2 + 1
d✓2 � a

a2 + b2 + 1
d✓1 � b

a2 + b2 + 1
d✓2

= 0,

where iL : L ,! T3 is the inclusion. We will now construct a Poisson structure ⇧Z on Z
which induces the foliation F , and which endows each leaf L with a symplectic form that is the
pullback to L of

! = d✓1 ^ d✓2 + bd✓1 ^ d✓3 � ad✓2 ^ d✓3.

Note that

i⇤L! = d✓1 ^ d✓2 + bd✓1 ^ (ad✓1 + bd✓2)� ad✓2 ^ (ad✓1 + bd✓2)

= (1 + a2 + b2)d✓1 ^ d✓2.

Hence necessarily

⇧Z |L = � (i⇤L!)
�1 =

✓

1

1 + a2 + b2

◆

@

@✓1
^ @

@✓2

Since (L, ⇧Z |L) has to be a Poisson submanifold of (Z,⇧Z), we must have

(⇧Z)p (dp✓1, dp✓2) = (⇧Z |L)p (dp✓1, dp✓2) =
1

1 + a2 + b2
,

(⇧Z)p (dp✓1, dp✓3) = (⇧Z |L)p (dp✓1, adp✓1 + bdp✓2) =
b

1 + a2 + b2
,

(⇧Z)p (dp✓2, dp✓3) = (⇧Z |L)p (dp✓2, adp✓1 + bdp✓2) = � a

1 + a2 + b2
,

where L is the leaf through p. This shows that we should define

⇧Z :=

✓

1

1 + a2 + b2

◆

@

@✓1
^ @

@✓2
+

✓

b

1 + a2 + b2

◆

@

@✓1
^ @

@✓3
�
✓

a

1 + a2 + b2

◆

@

@✓2
^ @

@✓3
.

One easily sees that ⇧Z is Poisson, i.e. that [⇧Z ,⇧Z ] = 0. Indeed, since the coe�cients of
⇧Z are constant, the derivation property of [·, ·] with respect to the wedge product reduces
[⇧Z ,⇧Z ] to Lie brackets of coordinate vector fields, which are all zero. It remains to check that
⇧Z indeed induces the foliation F . We have

Im(⇧]Z)p = span

⇢

⇣

⇧]Z

⌘

p
(dp✓1),

⇣

⇧]Z

⌘

p
(dp✓2),

⇣

⇧]Z

⌘

p
(dp✓3)

�

= span

(

✓

1

1 + a2 + b2

◆

@

@✓2

�

�

�

�

p

+

✓

b

1 + a2 + b2

◆

@

@✓3

�

�

�

�

p

,

�
✓

1

1 + a2 + b2

◆

@

@✓1

�

�

�

�

p

�
✓

a

1 + a2 + b2

◆

@

@✓3

�

�

�

�

p

,

�
✓

b

1 + a2 + b2

◆

@

@✓1

�

�

�

�

p

+

✓

a

1 + a2 + b2

◆

@

@✓2

�

�

�

�

p

)

= span

(

@

@✓2

�

�

�

�

p

+ b
@

@✓3

�

�

�

�

p

,
@

@✓1

�

�

�

�

p

+ a
@

@✓3

�

�

�

�

p

, b
@

@✓1

�

�

�

�

p

� a
@

@✓2

�

�

�

�

p

)

= span

(

@

@✓2

�

�

�

�

p

+ b
@

@✓3

�

�

�

�

p

,
@

@✓1

�

�

�

�

p

+ a
@

@✓3

�

�

�

�

p

)

,
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where the last equality holds since

b
@

@✓1

�

�

�

�

p

� a
@

@✓2

�

�

�

�

p

= b

 

@

@✓1

�

�

�

�

p

+ a
@

@✓3

�

�

�

�

p

!

� a

 

@

@✓2

�

�

�

�

p

+ b
@

@✓3

�

�

�

�

p

!

.

On the other hand, if L = f�1(k) is the leaf of F through p, then the preimage theorem gives

TpL = Ker(dpf),

where

dpf =

✓

@f

@✓1
(p),

@f

@✓2
(p),

@f

@✓3
(p)

◆

= (�a,�b, 1).

Hence

TpL = {(x, y, z) 2 R3 : �ax� by + z = 0}
= {(x, y, ax+ by) : x, y 2 R}
= span{(1, 0, a), (0, 1, b)},

so that

TpL = span

(

@

@✓2

�

�

�

�

p

+ b
@

@✓3

�

�

�

�

p

,
@

@✓1

�

�

�

�

p

+ a
@

@✓3

�

�

�

�

p

)

= Im(⇧]Z)p.

In conclusion, we have a corank-one Poisson structure ⇧Z on Z, whose symplectic foliation
has a closed defining one-form ↵ and a closed two-form ! that pulls back to the symplectic
form on each leaf. Hence, thickening Z to M := Z ⇥ (�✏, ✏), we have that ⇧Z is induced by a
log-symplectic structure on M . As in the proof of Theorem 5.3.1, a b-symplectic form on M
inducing ⇧Z is

e! = p⇤(!) +
dt

t
^ p⇤(↵),

where t is the coordinate on (�✏, ✏) and p : Z ⇥ (�✏, ✏)! Z is the projection. So we can take

e! = d✓1^d✓2+bd✓1^d✓3�ad✓2^d✓3+dt

t
^
✓

a

a2 + b2 + 1
d✓1 +

b

a2 + b2 + 1
d✓2 � 1

a2 + b2 + 1
d✓3

◆

.

Inverting e! then gives a log-symplectic structure ⇧ on M inducing ⇧Z . We compute

�

0

B

B

B

@

0 1 b � a
a2+b2+1

�1 0 �a � b
a2+b2+1

�b a 0 1
a2+b2+1

a
a2+b2+1

b
a2+b2+1

� 1
a2+b2+1

0

1

C

C

C

A

�1

=

0

B

B

@

0 1
a2+b2+1

b
a2+b2+1

�a
� 1

a2+b2+1
0 � a

a2+b2+1
�b

� b
a2+b2+1

a
a2+b2+1

0 1
a b �1 0

1

C

C

A

,

hence

⇧ =

✓

1

a2 + b2 + 1

◆

@

@✓1
^ @

@✓2
+

✓

b

a2 + b2 + 1

◆

@

@✓1
^ @

@✓3
� a

@

@✓1
^
✓

t
@

@t

◆

�
✓

a

a2 + b2 + 1

◆

@

@✓2
^ @

@✓3
� b

@

@✓2
^
✓

t
@

@t

◆

+
@

@✓3
^
✓

t
@

@t

◆

=

✓

t
@

@t

◆

^
✓

a
@

@✓1
+ b

@

@✓2
� @

@✓3

◆

+

✓

1

1 + a2 + b2

◆

@

@✓1
^ @

@✓2
+

✓

b

1 + a2 + b2

◆

@

@✓1
^ @

@✓3

�
✓

a

1 + a2 + b2

◆

@

@✓2
^ @

@✓3

=

✓

t
@

@t

◆

^
✓

a
@

@✓1
+ b

@

@✓2
� @

@✓3

◆

+⇧Z .
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5.3.2 Equivalence of extensions

Having determined when a corank-one Poisson structure ⇧Z allows a log-symplectic extension,
we now want to know to what extent such a log-symplectic extension is unique. We will see
that, up to a certain notion of equivalence, the log-symplectic extensions of ⇧Z , defined in some
tubular neighborhood of Z, are parameterized by the cohomology classes in H1

⇧
Z

(Z) of Poisson
vector fields transverse to the symplectic leaves.

The material we discuss in this subsection is addressed in [GMP2], but the exposition given
there is flawed. Below, we improve on the work done in [GMP2]. As such, while the results in
this subsection are not all original, some of the proofs are.

Construction of the correspondence

Let (M,Z) be a b-manifold. We will assume throughout that both M and Z are orientable, so
that Z has a defining function that exists on a tubular neighborhood of Z (see Lemma 4.1.2).
Recall that we have a canonical short exact sequence of vector bundles

0! LZ
i
,! bTM |Z ⇢|

Z! TZ ! 0, (5.13)

where ⇢|Z is the restriction to Z of the anchor map ⇢ : bTM ! TM and LZ is its kernel. We
have seen that LZ is a trivial line bundle, with canonical non-vanishing section ⇠. This section
can be described as ⇠ = fv|Z where f is any defining function for Z and v is a vector field with
df(v) = 1 (see Remark 4.1.12).

Lemma 5.3.5. Let (M,Z) be a b-manifold with M and Z orientable, and let ' : M ! M
be a di↵eomorphism such that '|Z = IdZ . Then the b-derivative2 b'⇤|Z : bTM |Z ! bTM |Z
commutes with the maps in (5.13), i.e. we have a commutative diagram

bTM |Z

LZ TZ

bTM |Z

⇢|
Z

b'⇤|
Z

⇢|
Z

.

Proof. By definition of the map b'⇤, we have a commutative diagram

bTM bTM

TM TM

b'⇤

⇢ ⇢

'⇤

, (5.14)

where ⇢ : bTM ! TM is the anchor map. Over Z, we have

'⇤|Z � ⇢|Z = ('|Z)⇤ � ⇢|Z = ⇢|Z ,
2We introduced the b-derivative in previous chapter. There we used the notation bd', but for consistency

with our notation for the usual derivative '⇤, we will from now on denote the b-derivative by b'⇤.
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where the first equality holds since Im(⇢|Z) is tangent to Z, and the second equality is true
since '|Z = IdZ . Hence by commutativity of (5.14), we get

⇢|Z � b'⇤|Z = '⇤|Z � ⇢|Z = ⇢|Z .

Next, let f be a defining function for Z and v a vector field such that df(v) = 1. Then

b'⇤(fv) =
�

f � '�1
�

'⇤v,

where f � '�1 is again a defining function for Z, and

d(f � '�1)('⇤v) = df(v) = 1.

Hence b'⇤|Z takes the canonical non-vanishing section of LZ to itself, which shows that b'⇤|Z
is the identity on LZ .

Example 5.3.6. Let (M,Z) =
�

(�1, 1)⇥ R, {y = 0}� and consider the sheer transformation

' : M !M : (x, y) 7! (x, y(1 + x)).

Then ' is the identity map on Z, and ' is a di↵eomorphism since its Jacobian determinant is

�

�

�

�

1 0
y 1 + x

�

�

�

�

= 1 + x, (5.15)

which is nowhere vanishing as x 2 (�1, 1). For the b-derivative b'⇤ : bTM ! bTM , we observe
that

b'⇤

✓

@

@x

◆

= '⇤

✓

@

@x

◆

=
@

@x
+ y

@

@y
,

where the last equality holds by considering the first column in the matrix (5.15). Similarly,

b'⇤

✓

y
@

@y

◆

=
�

y � '�1
�

'⇤

✓

@

@y

◆

=

✓

y

1 + x

◆

(1 + x)
@

@y
= y

@

@y
.

Restricting to Z, these results are in perfect agreement with Lemma 5.3.5.

The dual of the short exact sequence (5.13) is

0! T ⇤Z
⇢|⇤

Z! bT ⇤M |Z i⇤! L⇤
Z ! 0. (5.16)

The bundle L⇤
Z is also trivial, and a trivialization is the dual section ⇠⇤ of ⇠. A splitting of the

sequence (5.16) is given by the map

 : L⇤
Z ! bT ⇤M |Z : ⇠⇤ 7! df

f

�

�

�

�

Z

.

Indeed,

i⇤
✓

df

f

�

�

�

�

Z

◆

= ⇠⇤

since
⌧

i⇤
✓

df

f

�

�

�

�

Z

◆

, fv|Z
�

=

⌧

df

f

�

�

�

�

Z

, i (fv|Z)
�

=

⌧

df

f

�

�

�

�

Z

, fv|Z
�

= 1.
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Basic commutative algebra says that there exists a (unique) map � : bT ⇤M |Z ! T ⇤Z such that3

� � ⇢|⇤Z = Id and ⇢|⇤Z � �+  � i⇤ = Id.

We then have
� �  � i⇤ = � � (Id� ⇢|⇤Z � �) = �� � = 0,

and since i⇤ is surjective, this implies that � �  = 0. Dualizing (5.16) again gives a split exact
sequence

0! LZ

i
�
 ⇤

bTM |Z
⇢|Z
�
�⇤

TZ ! 0, (5.17)

where  ⇤ � �⇤ = (� �  )⇤ = 0. We have Im(�⇤) ⇢ Ker
⇣

df
f

�

�

�

Z

⌘

since

⌧

�⇤(w),
df

f

�

�

�

�

Z

�

= h�⇤(w), (⇠⇤)i = h ⇤(�⇤(w)), ⇠⇤i = 0,

which implies Im(�⇤) = Ker
⇣

df
f

�

�

�

Z

⌘

by counting dimensions. In conclusion, we have the decom-

position
bTM |Z = Im(�⇤)� Im(i) = Ker

✓

df

f

�

�

�

�

Z

◆

� LZ (5.18)

and isomorphisms

�⇤ : TZ ! Ker

✓

df

f

�

�

�

�

Z

◆

and ⇢|Z : Ker

✓

df

f

�

�

�

�

Z

◆

! TZ (5.19)

that are inverse to each other.

Now let ! 2 �(^2(bT ⇤M)) be a b-symplectic form on (M2n, Z) and denote by ⇤ 2 �(^2(bTM))
the inverse b-bivector field. The anchor ⇢ : bTM ! TM maps ⇤ to a log-symplectic structure
⇧ 2 �(^2TM). We denote by ⇧Z the corank-one Poisson structure that is the restriction of ⇧
to Z. Fix a defining function f for Z. By (5.18), we have

^2(bTM |Z) = ^2Ker

✓

df

f

�

�

�

�

Z

◆

�


Ker

✓

df

f

�

�

�

�

Z

◆

⌦ LZ

�

and therefore we can write

⇤|Z = X ^ g⇠ + ⇤K

= (gX) ^ ⇠ + ⇤K

= �◆
df

f

���
Z

⇤|Z ^ ⇠ + ⇤K ,

where ⇠ is the canonical non-vanishing section of LZ , g 2 C1(Z), X 2 �
⇣

Ker
⇣

df
f

�

�

�

Z

⌘⌘

and

⇤K 2 �
⇣

^2Ker
⇣

df
f

�

�

�

Z

⌘⌘

. Moreover, we have:

i) Under the isomorphism ^2TZ ⇠= ^2Ker
⇣

df
f

�

�

�

Z

⌘

arising from (5.19), we have that ⇤K

corresponds with ⇧Z . Indeed, if ⇤K = �⇤(w) for w 2 �(^2TZ) then

⇧Z = ⇢|Z(⇤|Z) = ⇢|Z(⇤K) = ⇢|Z(�⇤(w)) = w,

using that ⇠ 2 �(Ker(⇢|Z)) in the second equality. Hence indeed �⇤(⇧Z) = ⇤K .

3This is a general fact about short exact sequences in an additive category. We work in the additive category
of vector bundles over Z, with as morphisms the bundle maps covering Id

Z

.
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ii) The b-vector field �◆
df

f

���
Z

⇤|Z 2 �
⇣

Ker
⇣

df
f

�

�

�

Z

⌘⌘

corresponds under the isomorphism ⇢|Z
(5.19) to a vector field on Z, which we call vf :

vf := ⇢|Z
✓

�◆
df

f

���
Z

⇤|Z
◆

. (5.20)

Hence, for a fixed defining function f , we have that ⇤|Z is completely determined by the bivector
field ⇧Z and the vector field vf as

⇤|Z = vf ^ ⇠ +⇧Z .

Remark 5.3.7. We make some remarks concerning the above observations.

i) Since df/f is a closed element of b⌦1(M), we have that ⇢

✓

�◆
df

f

⇤

◆

is a Poisson vector

field (see the proof of Theorem 4.3.7). Its restriction to Z, which we denote by vf , is then
a Poisson vector field on Z since (Z,⇧Z) is a Poisson submanifold of (M,⇧). Moreover,
vf is transverse to the symplectic leaves of (Z,⇧Z). Indeed, under the isomorphism

TZ ⇠= Ker
⇣

df
f

�

�

�

Z

⌘

, we write

⇤|Z = vf ^ ⇠ +⇧Z ,

and since ⇧ is log-symplectic, we know that ⇧Z has rank 2n� 2. Since ⇤ 2 �(^2(bTM))
is non-degenerate, we have that

⇤|nZ = nvf ^ ⇠ ^⇧n�1
Z

is non-vanishing. In particular, vf ^⇧n�1
Z is non-vanishing, which implies that vf is trans-

verse to the leaves of (Z,⇧Z). This can be seen as follows. Choose splitting coordinates
(x1, y1, . . . , xn�1, yn�1, t) on Z, such that

⇧Z =
n�1
X

i=1

@

@xi
^ @

@yi
.

The expression of vf in the coordinates (x1, y1, . . . , xn�1, yn�1, t) has to involve @/@t, since
vf ^⇧n�1

Z is non-vanishing. As the leaves of ⇧Z integrate the distribution

span

⇢

@

@x1
,
@

@y1
, . . . ,

@

@xn�1
,

@

@yn�1

�

,

it follows that vf is transverse to the leaves of ⇧Z .

ii) Changing defining function will change vf by a Hamiltonian vector field. Indeed, any
other defining function is of the form gf for some function g that is non-vanishing. Now
note that

d(fg)

fg

�

�

�

�

Z

=
df

f

�

�

�

�

Z

+
dg

g

�

�

�

�

Z

=
df

f

�

�

�

�

Z

+ d log(|g|)|Z . (5.21)

Recall that we consider usual de Rham forms as b-forms by pulling them back under the
anchor map ⇢. With this in mind, (5.21) gives that

�◆
d(fg)
fg

���
Z

⇤|Z = �◆
df

f

���
Z

⇤|Z � ◆⇢⇤(d log(|g|))|
Z

⇤|Z ,
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whence
vfg = vf � ⇢|Z

�

◆⇢⇤(d log(|g|))|
Z

⇤|Z
�

.

Now using that
◆⇢⇤(d log(|g|))|

Z

⇠ = 0 since T ⇤
pZ = h⇠pi0 at p 2 Z

along with the fact that ⇢|Z(⇠) = 0, we have

⇢|Z
�

◆⇢⇤(d log(|g|))|
Z

⇤|Z
�

= ⇢|Z
�

◆⇢⇤(d log(|g|))|
Z

⇤|K
�

= ◆d log(|g|)|
Z

⇢(⇤K)

= ◆d log(|g|)|
Z

(⇧Z)

= ⇧]Z (d log(|g|)|Z) .

Hence, we conclude

vfg = vf �XHam(⇧
Z

)
log(|g|)|

Z

.

In the following, we denote by [v] 2 H1
⇧

Z

(Z) the Poisson cohomology class [vf ], for any
choice of f .

iii) Replacing the b-symplectic form ! by '⇤!, where ' : M ! M is a di↵eomorphism such
that '|Z = IdZ , the vector field vf also changes by a Hamiltonian vector field. Indeed,
noting that '⇤(f) is also a defining function for Z, we have

v'
⇤(f)

'�1
⇤ ⇤

= ⇢|Z
✓

�◆
d('⇤(f))
'

⇤(f)

���
Z

�

'�1
⇤ ⇤

� |Z
◆

= ⇢|Z
✓

�◆
'⇤

⇣
df

f

⌘���
Z

�

'�1
⇤ ⇤

� |Z
◆

= ⇢|Z
✓

�

'�1
⇤ |Z

�

✓

�◆
df

f

���
Z

⇤|Z
◆◆

= ⇢|Z
✓

�◆
df

f

���
Z

⇤|Z
◆

= vf⇤,

where the third equality holds by functoriality, and we used Lemma 5.3.5 in the fourth

equality. By ii) we know that v'
⇤(f)

'�1
⇤ ⇤

and vf
'�1
⇤ ⇤

di↵er by a Hamiltonian vector field, which

then shows that vf⇤ and vf
'�1
⇤ ⇤

di↵er by a Hamiltonian vector field.

By the above remark, we obtain:

Proposition 5.3.8. Let ! be a b-symplectic form on (M,Z), where M is orientable4 and ⇧Z

is the induced corank-one Poisson structure on Z.

i) Canonically associated to !, there is a class in the Poisson cohomology [v] 2 H1
⇧

Z

(Z), for
which one (hence any) representative is transverse to the symplectic leaves of Z.

ii) If two b-symplectic structures inducing ⇧Z are related by a di↵eomorphism which is the
identity on Z, then the associated cohomology classes agree. In other words, for each
corank-one Poisson structure ⇧Z on Z that arises from a b-symplectic form, the map

4Orientability of Z is automatic by Lemma 4.2.5
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{b� symplectic forms on (M,Z) inducing ⇧Z}/ ⇠
! {elements of H1

⇧
Z

(Z) transverse to the leaves} :

(class of !) 7! [v] (5.22)

is well-defined and canonical. Here ⇠ is the equivalence relation by di↵eomorphisms that
are the identity on Z.

The assignment (5.22) can be described alternatively in terms of modular vector fields.

Proposition 5.3.9. Let ! be a b-symplectic form on (M2n, Z), where M is orientable. Let
⇤ 2 �(^2(bTM)) be the b-bivector field inverse to !, and let ⇧ be the log-symplectic structure
on M obtained by applying the anchor map ⇢ : bTM ! TM to ⇤. Let f : V ! R be any
defining function for Z, defined on a tubular neighborhood V of Z. Then there exists a volume
form ⌦ on V such the vector field vf is the modular vector field X⌦

⇧ , restricted to Z.

Proof. Since ⇧n vanishes exactly on Z and vanishes linearly there, we have that � := (1/f)⇧n

is a nowhere vanishing 2n-vector field on V . Setting ⌦ to be its dual 2n-form (i.e. h�,⌦i = 1),
we get that ⌦ is a volume form on V satisfying h⇧n,⌦i = f . The proof of Theorem 5.2.1 shows
that we may use f as a global coordinate in the fibers of a tubular neighborhood U of Z, and
we can decompose

⇤|U = X⌦
⇧ |Z ^ f

@

@f
+⇧Z . (5.23)

Using that TZ = Ker
⇣

df
f

�

�

�

Z

⌘

under the anchor map ⇢, we therefore obtain

vf = �◆
df

f

���
Z

✓

X⌦
⇧ |Z ^ f

@

@f
+⇧Z

◆

= X⌦
⇧ |Z .

We showed in Proposition 2.9.6 that if ⌦ is a volume form and h a non-vanishing function,
then

Xh⌦
⇧ = X⌦

⇧ �Xlog |h|.

Therefore the assignment (5.22) in Proposition 5.3.8 can be described as follows: to the b-
symplectic form ! we associate [X⌦

⇧

�

�

Z
] 2 H1

⇧
Z

(Z), where ⇧ is the log-symplectic structure
corresponding with !, and ⌦ is any volume form on M .

Bijectivity of the correspondence

Restricting to a tubular neighborhood of Z, the assigment (5.22) becomes a bijection. Injectivity
is shown by the theorem below, which appeared in [GMP2, Theorem 35]. However, the proof
given there is sloppy regarding the volume forms used, and moreover it contains a gap in a
crucial place. See Remark 5.3.12 below. We present a more elaborate argument that rectifies
these problems.

Theorem 5.3.10. Let !0 and !1 be b-symplectic forms on (M2n, Z), where M is orientable.
Let ⇧0,⇧1 2 �(^2TM) be the corresponding log-symplectic structures. Assume that we have
⇧0|Z = ⇧1|Z := ⇧Z 2 ^2(TZ), and suppose moreover that

X⌦
⇧1

|Z = X⌦
⇧0

|Z +XHam(⇧
Z

)
f ,
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where ⌦ is some volume form on M and XHam(⇧
Z

)
f 2 X(Z) is the Hamiltonian vector field for

⇧Z associated with the function f 2 C1(Z). Then there exist neighborhoods O0, O1 of Z in M
and a di↵eomorphism � : O0 ! O1 such that �|Z = IdZ and �⇤!1 = !0.

Proof.

Step 1
Let g be an extension of the function f , defined in some neighborhood E of Z. Consider
the volume form ⌦0 := e�g⌦ on E. We then have on E:

X⌦0
⇧0

= X⌦
⇧0
�XHam(⇧0)

log(e�g)
= X⌦

⇧0
�XHam(⇧0)

�g = X⌦
⇧0

+XHam(⇧0)
g .

Using that (Z,⇧Z) is a Poisson submanifold of (M,⇧0), we have

XHam(⇧0)
g |Z =

⇣

⇧]0(dg)
⌘

�

�

�

Z
= ⇧]Z(d(g|Z)) = ⇧]Z(df) = XHam(⇧

Z

)
f .

Hence
X⌦

⇧1
|Z = X⌦

⇧0
|Z +XHam(⇧

Z

)
f = X⌦0

⇧0
|Z . (5.24)

Step 2
Using the Moser trick for volume forms, we will now find a di↵eomorphism  : V0 ! V1,
where V0, V1 are open neighborhoods of Z, such that  ⇤⌦0 = ⌦ and  |Z = IdZ .

Put ⌦0 = ⌦ and ⌦1 = ⌦0. Consider the straight line homotopy

⌦t := ⌦0 + t(⌦1 � ⌦0) 0  t  1.

We claim that ⌦t is a volume form for each t 2 [0, 1]. Note that

⌦t = ⌦+ t
�

e�g⌦� ⌦
�

=
�

1 + t(e�g � 1)
�

⌦,

where 1 + t(e�g � 1) is nowhere vanishing for all t 2 [0, 1]. Indeed, for t = 0 it is clearly
non-vanishing, whereas for t 6= 0 we have

1 + t(e�g(p) � 1) = 0, e�g(p) =
�1
t

+ 1  0.

Here the last inequality holds since 0 < t  1. So we would have that e�g(p)  0, which is
impossible. We now have a path of volume forms ⌦t on E. Note that ⌦1 � ⌦0 is closed,
being a di↵erential form of top degree. Moreover, its pullback to Z vanishes, being a
2n-form on a 2n � 1-dimensional manifold. Hence the Relative Poincaré Lemma applies
(see Proposition 1.3.9), which tells us that there exists ⌫ 2 ⌦2n�1(E) such that

⌦1 � ⌦0 = d⌫

and ⌫|Z = 0. To find the desired di↵eomorphism  , it now su�ces to solve the Moser
equation

◆X
t

⌦t = �⌫ (0  t  1)

for Xt, which is possible by Lemma 5.3.11 below. Note that Xt|Z = 0 for each t 2 [0, 1],
because ⌫|Z = 0. We now integrate {Xt}t2[0,1] to an isotopy {⇢t}t2[0,1], and application of
the Tube Lemma as in the Local Moser Theorem 1.3.14 ensures the existence of an open
neighborhood V ⇢ E of Z such that

⇢ : [0, 1]⇥ V ! E,

i.e. ⇢t is defined on V for each t 2 [0, 1]. Note that ⇢t|Z = IdZ since Xt|Z = 0. Putting
 = ⇢1, V0 = V and V1 = ⇢1(V ), we obtain the desired di↵eomorphism  : V0 ! V1

satisfying
 ⇤⌦0 = ⌦ and  |Z = IdZ .
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Step 3
Using that  ⇤⌦0 = ⌦, as obtained in the previous step, we have

X⌦
�( ⇤!0)�1

�

�

�

Z
= X ⇤⌦0

�( ⇤!0)�1

�

�

�

Z
=
⇣

 �1
⇤

⇣

X⌦0

�!�1
0

⌘⌘

�

�

�

Z
=
⇣

 �1
⇤

⇣

X⌦0
⇧0

⌘⌘

�

�

�

Z

=
�

 �1|Z
�

⇤

⇣

X⌦0
⇧0

�

�

�

Z

⌘

= X⌦0
⇧0

�

�

�

Z
= X⌦

⇧1

�

�

Z
. (5.25)

The second equality holds by functoriality, the last equality is (5.24) and we used in addi-
tion that X⌦0

⇧0
is tangent to Z at point of Z. Now consider the log-symplectic structures

f⇧0 := �( ⇤!0)�1 and ⇧1, defined on a neighborhood of Z. Since  ⇤
⇣

f⇧0

⌘

= ⇧0, we have

⇧1|Z = ⇧0|Z =
⇣

 ⇤
⇣

f⇧0

⌘⌘

�

�

�

Z
= ( |Z)⇤

⇣

f⇧0

�

�

�

Z

⌘

= f⇧0

�

�

�

Z
2 ^2(TZ),

and the modular vector fields of f⇧0 and ⇧1 with respect to ⌦ coincide on Z.

Step 4
By Theorem 5.2.1, there exists a tubular neighborhood U ⇢ Z ⇥ R of Z on which

f⇧0

�

�

�

U
= X⌦

f⇧0

�

�

�

Z
^ t0

@

@t0
+ f⇧0|Z

⇧1|U = X⌦
⇧1

�

�

Z
^ t1

@

@t1
+⇧1|Z , (5.26)

where t0 = hf⇧0
n
,⌦i and t1 = h⇧n

1 ,⌦i are defining functions for Z. Considering f⇧0
n
and

⇧n
1 as nowhere vanishing sections of the line bundle ^2n(bTM), there exists a nowhere

vanishing function f 2 C1(U) with f⇧0
n
= f⇧n

1 . This implies that t0 = ft1. Using t0 as

defining function for Z, we can decompose the b-symplectic forms f!0 and !1 dual to f⇧0

and ⇧1 as

f!0|U = ↵0 +
dt0
t0
^ p⇤(✓0)

!1|U = ↵1 +
dt0
t0
^ p⇤(✓1),

where p : U ! Z is the projection.

Claim: f!0|Z = !1|Z .
By Lemma 5.1.2, we know that (✓0,f↵0) is the cosymplectic structure corresponding to
⇣

f⇧0

�

�

�

Z
, f⇧0

]
⇣

dt0
t0

⌘

�

�

�

Z

⌘

, and (✓1,f↵1) corresponds to
⇣

⇧1|Z , ⇧]1

⇣

dt0
t0

⌘

�

�

�

Z

⌘

. Since

dt0
t0

=
df

f
+

dt1
t1

,

we have, using (5.26) and the fact that the modular vector fields X⌦
f⇧0

�

�

�

Z
and X⌦

⇧1

�

�

Z
as

well as f⇧0|Z and ⇧1|Z are tangent to Z:

⇧]1

✓

dt0
t0

◆

�

�

�

�

Z

= � X⌦
⇧1

�

�

Z

dt0
t0

✓

t1
@

@t1

◆

�

�

�

�

Z

= � X⌦
⇧1

�

�

Z

✓

df

f

�

�

�

�

Z

✓

t1
@

@t1

�

�

�

�

Z

◆

+ 1

◆

.

107



Note here that df/f is an honest de Rham form since f is non-vanishing. Hence at points
of Z, it annihilates the normal b-vector field t1@/@t1. So

⇧]1

✓

dt0
t0

◆

�

�

�

�

Z

= � X⌦
⇧1

�

�

Z
= � X⌦

f⇧0

�

�

�

Z
= f⇧0

]
✓

dt0
t0

◆

�

�

�

�

Z

.

Hence
⇣

f⇧0

�

�

�

Z
, f⇧0

]
⇣

dt0
t0

⌘

�

�

�

Z

⌘

=
⇣

⇧1|Z , ⇧]1

⇣

dt0
t0

⌘

�

�

�

Z

⌘

, which implies that (✓0,f↵0) = (✓1,f↵1).

We conclude that

f!0|Z = f↵0 +
dt0
t0

�

�

�

�

Z

^ ✓0 = f↵1 +
dt0
t0

�

�

�

�

Z

^ ✓1 = !1|Z .

Step 5
The Local b-Moser Theorem 4.2.7 gives open neighborhoods O0 and O1 of Z and a di↵eo-
morphism � : O0 ! O1 such that �|Z = IdZ and �⇤f!0 = !1. Since f!0 =  ⇤!0, it follows
that

�⇤( ⇤!0) = ( � �)⇤!0 = !1,

where  �� : O0\��1(V0)!  (O1)\V1 is a di↵eomorphism between open neighborhoods
of Z, satisfying ( � �)|Z = IdZ . This finishes the proof.

Lemma 5.3.11. If V is a real vectorspace of dimension n and µ 2 ^nV ⇤ is nonzero, then the
linear map

V ! ^n�1V ⇤ : v 7! ◆vµ

is an isomorphism.

Proof. It is enough to show injectivity, since

dim
�^n�1V ⇤� =

✓

n

n� 1

◆

= n = dim(V ).

Suppose ◆vµ = 0 and assume by contradiction that v 6= 0. We extend {v} to a basis {v, v2, . . . , vn}
of V and obtain that

µ(v, v2, . . . , vn) = (◆vµ) (v2, . . . , vn) = 0.

So µ evaluates a basis of V to zero, which implies that µ = 0. This contradicts the assumption
of the lemma.

Remark 5.3.12. In [GMP2, Theorem 35], one claims that the assumptions of Theorem 5.3.10
imply that !0|Z = !1|Z . This is not true: we give a concrete counterexample below, which is a
slight adaptation of [GMP2, Example 18]. So the proof of Theorem 5.3.10 is more subtle than
suggested in [GMP2, Theorem 35]. The crucial ingredient missing there is the Moser argument
for volume forms that we use in Step 2 of our proof. It results in a di↵eomorphism  defined
near Z so that

( ⇤!0) |Z = !1|Z ,
and at this stage we can safely use the local b-Moser theorem. This was not possible from the
outset, since !0|Z 6= !1|Z in general.
As a counterexample to the claim in [GMP2, Theorem 35], we consider S2 ⇥ (S1 ⇥ R), with
cylindrical coordinates (✓, h) on S2 and (✓1, z) on S1⇥R. Consider the log-symplectic structures

⇧ = h
@

@h
^
✓

@

@✓
+

@

@✓1

◆

+
@

@✓1
^ @

@z
,
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e⇧ = h
@

@h
^ @

@✓
+

@

@✓1
^ @

@z
.

On their common singular locus Z $ {h = 0}, they both induce the Poisson structure

⇧Z :=
@

@✓1
^ @

@z
.

The b-symplectic forms ! := �⇧�1 and e! := �
⇣

e⇧
⌘�1

are given by

! =
dh

h
^ d✓ + dz ^ d✓ + d✓1 ^ dz,

e! =
dh

h
^ d✓ + d✓1 ^ dz.

We take the volume form ⌦ := d✓1 ^ dz ^ dh ^ d✓. By Lemma 4.2.14, we then know that

X⌦
e⇧ = � @

@✓
.

We now compute X⌦
⇧ . For any smooth function f , we have

Xf = h
@f

@h

@

@✓
� h

@f

@✓

@

@h
+ h

@f

@h

@

@✓1
� h

@f

@✓1

@

@h
+
@f

@✓1

@

@z
� @f

@z

@

@✓1
,

using Lemma 2.7.4. We then note that

£X
f

d✓1 = d
�

£X
f

✓1
�

= d (d✓1(Xf )) = d

✓

h
@f

@h
� @f

@z

◆

,

£X
f

dz = d
�

£X
f

z
�

= d (dz(Xf )) = d

✓

@f

@✓1

◆

,

£X
f

dh = d
�

£X
f

h
�

= d (dh(Xf )) = d

✓

�h@f
@✓
� h

@f

@✓1

◆

,

£X
f

d✓ = d
�

£X
f

✓
�

= d (d✓(Xf )) = d

✓

h
@f

@h

◆

.

Therefore,

£X
f

⌦ = d

✓

h
@f

@h
� @f

@z

◆

^ dz ^ dh ^ d✓ + d✓1 ^ d

✓

@f

@✓1

◆

^ dh ^ d✓

+ d✓1 ^ dz ^ d

✓

�h@f
@✓
� h

@f

@✓1

◆

^ d✓ + d✓1 ^ dz ^ dh ^ d

✓

h
@f

@h

◆

=

✓

h
@2f

@✓1@h
� @2f

@✓1@z
+

@2f

@z@✓1
� @f

@✓
� h

@2f

@h@✓
� @f

@✓1
� h

@2f

@h@✓1
+ h

@2f

@✓@h

◆

⌦

=

✓

�@f
@✓
� @f

@✓1

◆

⌦,

so that

X⌦
⇧ = � @

@✓
� @

@✓1
.

We note that

X⌦
⇧

�

�

Z
� X⌦

e⇧

�

�

�

Z
= � @

@✓1
= ⇧]Z(dz)

is a Hamiltonian vector field for ⇧Z , but nonetheless

e!|Z 6= !|Z .
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We can now prove our main statement, which refines [GMP2, Theorem 50].

Theorem 5.3.13. Let (M,Z) be a b-manifold with M orientable, and assume that ⇧Z is a
corank-one Poisson structure on Z that is induced by a b-symplectic structure. Then the assign-
ment

{b� symplectic forms defined on a tubular neighborhood of Z inducing ⇧Z}/ ⇠
! {elements of H1

⇧
Z

(Z) transverse to the leaves} :

(class of !) 7! [v] (5.27)

is bijective. Here ⇠ is the equivalence relation by di↵eomorphisms defined in a neighborhood of
Z that are the identity on Z.

Proof. Injectivity of (5.27) is proved in Theorem 5.3.10. Surjectivity is readily checked as
follows. By orientability of Z and M , the normal bundle NZ is trivial, so we can choose
a tubular neighborhood U ⇠= Z ⇥ (�1, 1), with coordinate t on the interval. Now if v is a
transverse Poisson vector field on (Z,⇧Z), then

⇧ := v ^ t
@

@t
+⇧Z (5.28)

is a log-symplectic structure on U with singular locus Z, inducing ⇧Z on Z. Moreover, the
vector field vt⇧ as defined in (5.20) is equal to v, which proves surjectivity.

We finish this chapter by working out an example on Theorems 5.3.1 and 5.3.13.

Example 5.3.14. Consider the b-manifold (M,Z) = (R2, {y = 0}). We start with the zero
Poisson structure ⇧Z ⌘ 0 on Z (which is the only Poisson structure on Z).

• Does ⇧Z = 0 come from a log-symplectic structure? By Theorem 5.3.1, we have to check
if there exists a Poisson vector field on Z transverse to the leaves of Z. Since any vector
field on Z is Poisson and the leaves of Z are its points, a transverse Poisson vector field
is the same thing as a nowhere vanishing vector field. For sure, such a vector field exists
on Z and therefore ⇧Z = 0 is induced by a log-symplectic structure.

• The elements of H1
⇧

Z

(Z) = X(Z) that are transverse to the symplectic leaves of Z are
given by

⇢

g(x)
@

@x
: g 2 C1(Z) non-vanishing

�

.

To each of these vector fields corresponds a class of b-symplectic structures inducing ⇧Z , by
Theorem 5.3.13. Note that (5.28) shows us how to find the class of b-symplectic structures
corresponding with g 2 C1(Z), namely we take the equivalence class of

!g := �
✓

g(x)
@

@x
^ y

@

@y

◆�1

= g�1(x)dx ^ dy

y
2 b⌦2(M).

Let us double-check that, if g and g0 are di↵erent non-vanishing functions on Z, then the
corresponding b-symplectic forms !g and !g0 are indeed not related by a di↵eomorphism
⇢ : M !M with ⇢|Z = IdZ . If ⇢ is such a di↵eomorphism, then Lemma 5.3.5 implies that

b⇢⇤|Z
✓✓

y
@

@y

◆

�

�

�

�

Z

◆

=

✓

y
@

@y

◆

�

�

�

�

Z
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and
b⇢⇤|Z

✓

@

@x

�

�

�

�

Z

◆

=

✓

@

@x
+ h(x)y

@

@y

◆

�

�

�

�

Z

,

for some function h 2 C1(Z). We then have for ! 2 b⌦2(M):

(⇢⇤!)|Z
✓

@

@x

�

�

�

�

Z

,

✓

y
@

@y

◆

�

�

�

�

Z

◆

= !|Z
✓

b⇢⇤|Z
✓

@

@x

�

�

�

�

Z

◆

, b⇢⇤|Z
✓✓

y
@

@y

◆

�

�

�

�

Z

◆◆

= !|Z
✓✓

@

@x
+ h(x)y

@

@y

◆

�

�

�

�

Z

,

✓

y
@

@y

◆

�

�

�

�

Z

◆

= !|Z
✓

@

@x

�

�

�

�

Z

,

✓

y
@

@y

◆

�

�

�

�

Z

◆

,

where the last equality holds by skew-symmetry of !. Hence (⇢⇤!) |Z = !|Z . This shows
that for g 6= g0, the b-symplectic forms !g and !g0 are not related by such a di↵eomorphism
⇢: if this were the case, then !g and !g0 would have the same restriction to Z, which they
don’t.

• So we conclude that there are as many pairwise inequivalent log-symplectic extensions of
⇧Z = 0 as there are non-vanishing functions on the real line. So the set of equivalence
classes of log-symplectic extensions of ⇧Z corresponds to an open subset of the infinite
dimensional real vector space C1(R).
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Chapter 6

Foliation invariants

This chapter aims to give a characterization of a certain class of compact corank-one Poisson
manifolds, namely those equipped with a closed one-form defining the symplectic foliation and
a closed two-form extending the symplectic form on each leaf.

To do so, we will define two foliation invariants, the vanishing of which is equivalent with
the existence of such a closed defining one- and two-form. We then show that a foliation with
vanishing invariants on a compact manifold M is defined by a fibration over S1, and we will
characterize the manifold M as a mapping torus.

The symplectic foliation on the singular locus of a log-symplectic structure always has van-
ishing invariants, so that the aforementioned results apply in particular to the singular loci of
log-symplectic structures, provided they are compact. This chapter follows [GMP1].

6.1 Introducing two foliation invariants

6.1.1 The first obstruction class

Throughout, we will be dealing with regular codimension-one foliations. Let us briefly recall
what a regular foliation is.

Definition 6.1.1. A regular foliation F of dimension k on a manifold Mn is a decomposition
of M into connected immersed submanifolds {La}a2A of dimension k, called the leaves of the
foliation, with the following local property: every point in M has a neighborhood U with
coordinates (x1, . . . , xn) such for each leaf La, the connected components of U \ La are given
by the equations

8

>

>

<

>

>

:

xk+1 = constant
...

xn = constant

.

Such charts (U, x1, . . . , xn) are called foliated charts. The codimension of F is n� k.

So a regularly foliated manifold M is locally modelled as an a�ne space decomposed into
parallel a�ne subspaces.

Definition 6.1.2. Let F be a regular foliation on M . The union of the tangent spaces TpL for
p 2M , where L is the leaf through p, forms a subbundle TF ⇢ TM . The normal bundle of the
foliation is the quotient bundle TM/TF . The conormal bundle is its dual bundle (TM/TF)⇤,
which is identified with the annihilator

Ann(TF) = {↵ 2 T ⇤
pM : p 2M, ↵(v) = 0 8v 2 TpL}.
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Figure 6.1: A regular 1-dimensional foliation. Figure taken from [Mil]

Definition 6.1.3. A foliation F on M is called transversely orientable1 if the normal bundle
TM/TF is orientable.

Intuitively, a transversely orientable foliation F is a foliation that allows one to distinguish
between “above the leaf” and “below the leaf”. In case F is a codimension-one foliation, we
have the following equivalences:

F is transversely orientable, TM/TF is orientable

, (TM/TF)⇤ has a nowhere vanishing section

A nowhere vanishing section of (TM/TF)⇤ is what we call a defining one-form for the
codimension-one foliation F .

Definition 6.1.4. Let F be a transversely orientable codimension-one foliation of M . A di↵er-
ential form ↵ 2 ⌦1(M) is a defining one-form of the foliation F if it is nowhere vanishing and
i⇤L↵ = 0 for all leaves L, where iL : L ,!M is the inclusion.

Being non-vanishing sections of the line bundle (TM/TF)⇤, any two defining one-forms
di↵er by a non-vanishing factor in C1(M).

Remark 6.1.5. If the foliation F is induced by an orientable log-symplectic structure ⇧ on
some ambient manifold, then we can choose a defining-one form ↵ such that ↵(X⌦

⇧

�

�

M
) = 1

by Theorem 5.1.1. With this extra condition, the defining one-form is unique, even when
we consider a di↵erent volume form ⌦: this causes the modular vector field to change by a
Hamiltonian vector field, which is tangent to the leaves of F .

A basic property of defining one-forms is the following.

Lemma 6.1.6. Let F be a codimension-one foliation of Mn, with defining one-form ↵ 2 ⌦1(M).
Then for µ 2 ⌦k(M), we have µ 2 ↵ ^ ⌦k�1(M), ↵ ^ µ = 0.

Proof. One direction is clear, for if µ = ↵ ^ ⌘ for some ⌘ 2 ⌦k�1(M) then

↵ ^ µ = ↵ ^ ↵ ^ ⌘ = 0.

Conversely, assume that ↵^µ = 0. Fix a point p 2M and choose a foliated chart (U, x1, . . . , xn)
around p so that the connected components of the leaves are locally given by xn = constant.
We write

↵|U =
n
X

i=1

gidxi,

1The terminology “co-orientable” is also used.
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and since the pullback of ↵ to each leaf is zero, we have

gj = ↵|U
✓

@

@xj

◆

= 0 for j = 1, . . . , n� 1.

Hence ↵|U = gndxn, with gn non-vanishing. Now write

µ|U =
X

1i1<···<i
k

n

fi1,...,i
k

dxi1 ^ · · · ^ dxi
k

.

Since ↵ ^ µ = 0, we have that gnfi1,...,i
k

= 0 whenever n /2 {i1, . . . , ik}. As gn is non-vanishing,
this implies that fi1,...,i

k

= 0 whenever n /2 {i1, . . . , ik}. Therefore,

µ|U =
X

1i1<···<i
k�1<n

fi1,...,i
k�1,ndxi1 ^ · · · ^ dxi

k�1 ^ dxn

=

0

@

X

1i1<···<i
k�1<n

fi1,...,i
k�1,ndxi1 ^ · · · ^ dxi

k�1

1

A ^ dxn

=

0

@

X

1i1<···<i
k�1<n

fi1,...,i
k�1,n

gn
dxi1 ^ · · · ^ dxi

k�1

1

A ^ ↵|U

= ↵|U ^
0

@(�1)k�1
X

1i1<···<i
k�1<n

fi1,...,i
k�1,n

gn
dxi1 ^ · · · ^ dxi

k�1

1

A

:= ↵|U ^ ⌘U . (6.1)

We make a covering U of M consisting of such opens U , and we choose a partition of unity
{�U : U 2 U} subordinate to U . If we let

⌘ :=
X

U2U
�U⌘U 2 ⌦k�1(M),

then (6.1) implies that µ = ↵ ^ ⌘.
Corollary 6.1.7. Let F be a codimension-one foliation of Mn with defining one-form ↵. Then
for µ 2 ⌦k(M), we have that µ 2 ↵ ^ ⌦k�1(M) if and only if i⇤Lµ = 0 for each leaf L 2 F .

Proof. If µ = ↵ ^ ⌘ for some ⌘ 2 ⌦k�1(M), then

i⇤Lµ = (i⇤L↵) ^ (i⇤L⌘) = 0 ^ (i⇤L⌘) = 0.

Conversely, assume that i⇤Lµ = 0 for each leaf L 2 F . By Lemma 6.1.6, it su�ces to show that
↵ ^ µ = 0. Choose p 2 M and let L be the leaf through p. We have to check that (↵ ^ µ)p
vanishes on (k + 1)-tuples (v1, . . . , vk+1) where either vj 2 TpL for all j 2 {1, . . . , k + 1}, or
v1, . . . , vk 2 TpL and vk+1 /2 TpL. In the former case, we have

(↵ ^ µ)p(v1, . . . , vk+1) = (i⇤L(↵ ^ µ))p (v1, . . . , vk+1)

= ((i⇤L↵) ^ (i⇤Lµ))p (v1, . . . , vk+1)

= 0.

In the latter case,

(↵ ^ µ)p(v1, . . . , vk+1) =
1

k!

X

�2S
k+1

sgn(�)↵p(v�(1))µp(v�(2), . . . , v�(k+1)). (6.2)
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If �(1) 6= k+1 then ↵p(v�(1)) = 0 since i⇤L↵ = 0. If �(1) = k+1, then µp(v�(2), . . . , v�(k+1)) = 0
since i⇤Lµ = 0. Hence the expression (6.2) vanishes, and we conclude that (↵ ^ µ)p = 0.

Remark 6.1.8. In particular, if ↵ 2 ⌦1(M) is a defining one-form for F , then

i⇤L(d↵) = d(i⇤L↵) = 0,

so that
d↵ = � ^ ↵ (6.3)

for some � 2 ⌦1(M). This implies that ↵ ^ ⌦•�1(M) is a subcomplex of ⌦•(M). Indeed, for
↵ ^ ⌘ 2 ↵ ^ ⌦k�1(M) one has

d(↵ ^ ⌘) = (d↵) ^ ⌘ � ↵ ^ (d⌘) = �↵ ^ � ^ ⌘ � ↵ ^ (d⌘) = ↵ ^ (�� ^ ⌘ � d⌘) 2 ↵ ^ ⌦k(M).

In fact, the complex ↵ ^ ⌦•�1(M) does not depend on the choice of defining one-form
↵. Indeed, if ↵0 is another defining one-form, then ↵0 = f↵ for some non-vanishing function
f 2 C1(M) and one can write

↵ ^ ⌘ = ↵0 ^ 1

f
⌘,

↵0 ^ ⇠ = ↵ ^ (f⇠),

showing that ↵^⌦•�1(M) = ↵0^⌦•�1(M)2. Therefore, with a transversely orientable codimension-
one foliation F on M comes canonically a short exact sequence of complexes

0 �! �

↵ ^ ⌦•�1(M), d
� �! (⌦•(M), d)

j�!
✓

⌦•(M)

↵ ^ ⌦•�1(M)
, d

◆

�! 0. (6.4)

The quotient complex
�

⌦•(M)/↵ ^ ⌦•�1(M), d
�

is nothing else but the complex of di↵erential
forms along the leaves of F . Indeed, let D denote the tangent distribution of F . We then have
a surjective map

⌦•(M)! �(^•D⇤) : ⌘ 7! ⌘|D,
whose kernel is

{⌘ 2 ⌦•(M) : i⇤L⌘ = 0 for all leaves L 2 F} = ↵ ^ ⌦•�1(M),

using Corollary 6.1.7 in the last equality. And d coincides with the leafwise de Rham di↵erential
dF , as by definition d � j = j � d. Hence,

✓

⌦•(M)

↵ ^ ⌦•�1(M)
, d

◆

=
�

�(^•D⇤), dF
�

.

Remark 6.1.9. We make some observations concerning (6.3).

i) Although for a fixed choice of ↵, the form � in (6.3) is not unique, the projection j(�)
is. Here j is the map defined in the sequence (6.4). Indeed, if d↵ = � ^ ↵ = �0 ^ ↵,
then (� � �0) ^ ↵ = 0, so that � � �0 2 ↵ ^ ⌦0(M) = C1(M)↵ by Lemma 6.1.6. Then
j(� � �0) = 0, so j(�) = j(�0).

2Alternatively, Corollary 6.1.7 implies that the complex ↵ ^ ⌦•�1(M) consists of exactly those di↵erential
forms whose pullback to the leaves vanishes. From this, it is immediate that ↵ ^ ⌦•�1(M) is a subcomplex of
⌦•(M) (since the exterior derivative commutes with pullbacks) and that it is independent of the choice of ↵.
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ii) If d↵ = � ^ ↵, then j(�) is closed for the di↵erential d. Indeed, we have

0 = d(d↵) = d(� ^ ↵) = (d�) ^ ↵� � ^ (d↵) = (d�) ^ ↵� � ^ � ^ ↵ = (d�) ^ ↵,

so that d� 2 ↵ ^ ⌦1(M) by Lemma 6.1.6. This then implies that

d(j(�)) = j(d�) = 0.

By the previous remark, we can now define the first foliation invariant.

Definition 6.1.10. Let F be a transversely orientable codimension-one foliation of M , with
defining one-form ↵ 2 ⌦1(M). The first obstruction class CF of F is a class in the first foliated
cohomology group, defined as

CF = [j(�)] 2 H1

✓

⌦•(M)

↵ ^ ⌦•�1(M)

◆

,

where d↵ = � ^ ↵.
Let us check that CF only depends on the foliation F , not on the choice of defining one-form.

First o↵, as argued before, the complex ⌦•(M)/↵^⌦•�1(M) is independent of choice of defining
one-form. Next, if ↵ and ↵0 are defining one-forms for F , then ↵0 = f↵ for some non-vanishing
f 2 C1(M). We have

d↵0 = df ^ ↵+ fd↵ = df ^ ↵+ f� ^ ↵ =

✓

df

f
+ �

◆

^ ↵0,

so that �0 = d log(|f |) + �. Hence

j(�0) = j(d log(|f |)) + j(�) = d(j(log(|f |))) + j(�),

which implies that [j(�0)] = [j(�)].

The first obstruction class CF measures the obstruction to the existence of a closed defining
one-form for F .

Proposition 6.1.11. Let F be a transversely orientable codimension-one foliation of M . The
first obstruction class CF vanishes identically if and only if F has a closed defining one-form.

Proof. We have the following equivalences:

[j(�)] = 0, j(�) = d(j(f)) = j(df) (f 2 C1(M))

, � � df 2 ↵ ^ ⌦0(M)

, � = df + g↵ (g 2 C1(M)).

First assume that CF = 0. Let ↵ be a defining one-form for F such that d↵ = � ^ ↵ with
� = df + g↵ for some f, g 2 C1(M). We consider ↵0 := e�f↵, which is also a defining one-form
for F since e�f is non-vanishing. Moreover,

d↵0 = d
⇣

e�f↵
⌘

= �e�fdf ^ ↵+ e�fd↵

= �e�fdf ^ ↵+ e�f� ^ ↵
= �e�fdf ^ ↵+ e�f (df + g↵) ^ ↵
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= �e�fdf ^ ↵+ e�fdf ^ ↵
= 0.

Hence if CF = 0, then we can find a closed defining one-form for F . Conversely, if ↵ is a closed
defining one-form for F , then d↵ = 0 = 0 ^ ↵, so that we can take � = 0. It follows that

CF = [j(0)] = 0.

6.1.2 The second obstruction class

In what follows, we assume that M is endowed with a regular corank-one Poisson structure ⇧
and that F is the corresponding codimension-one symplectic foliation. Furthermore, we assume
that the first obstruction class CF vanishes, so that F is defined by a closed one-form ↵ 2 ⌦1(M).
We fix ↵ throughout.

Definition 6.1.12. A two-form ! 2 ⌦2(M) is a defining two-form of the foliation F induced
by the Poisson structure ⇧ if i⇤L! = !L is the symplectic form on each leaf iL : L ,!M .

Remark 6.1.13. A codimension-one symplectic foliation F always has a defining two-form.
This follows from exactness of the sequence (5.2), or merely from surjectivity of the map r in
that sequence. In case F is induced by an orientable log-symplectic structure ⇤ on some ambient
manifold, then one can choose a defining two-form ! such that ◆X⌦

⇤ |
M

! = 0, by Theorem 5.1.1.

With this extra condition, the defining two-form is unique (for fixed choice of volume form ⌦).

Note that
i⇤L(d!) = d(i⇤L!) = d!L = 0

for all leaves L 2 F , so that by Corollary 6.1.7 we can write

d! = µ ^ ↵ for some µ 2 ⌦2(M). (6.5)

Remark 6.1.14. We make some observations concerning (6.5).

i) Although for a fixed choice of ↵, the form µ in (6.5) is not unique, the projection j(µ) is.
Indeed, if d! = µ ^ ↵ = µ0 ^ ↵, then (µ � µ0) ^ ↵ = 0, so that µ � µ0 2 ↵ ^ ⌦1(M) by
Lemma 6.1.6. Then j(µ� µ0) = 0, so that j(µ) = j(µ0).

ii) If d! = µ ^ ↵, then j(µ) is closed for the di↵erential d. Indeed, using the fact that ↵ is
closed, we have

0 = d(d!) = d(µ ^ ↵) = (dµ) ^ ↵+ µ ^ (d↵) = (dµ) ^ ↵,
so that dµ 2 ↵ ^ ⌦2(M) by Lemma 6.1.6. This then implies that

d(j(µ)) = j(dµ) = 0.

These observations allow us to define the second foliation invariant.

Definition 6.1.15. Let ⇧ be a corank-one Poisson structure on M and let F be the induced
codimension-one symplectic foliation. Assume that the first obstruction class CF vanishes, and
fix a closed defining one-form ↵ for F . The second obstruction class �F of F is a class in the
second foliated cohomology group, defined as

�F = [j(µ)] 2 H2

✓

⌦•(M)

↵ ^ ⌦•�1(M)

◆

,

where d! = µ ^ ↵.
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Let us check that the second obstruction class �F does not depend on the choice of defining
two-form for F . If ! and !0 are both defining two-forms for F , then i⇤L(!

0 � !) = !L � !L = 0
for each leaf L 2 F . Hence by Corollary 6.1.7, we get

!0 = ! + ↵ ^ ⇠ for some ⇠ 2 ⌦1(M).

Therefore,

d!0 = d! + d↵ ^ ⇠ � ↵ ^ d⇠

= µ ^ ↵� ↵ ^ d⇠

= (µ� d⇠) ^ ↵,
so that µ0 = µ� d⇠. Hence

j(µ0) = j(µ)� j(d⇠) = j(µ)� d(j(⇠)),

which implies that [j(µ0)] = [j(µ)].

The second obstruction class �F measures the obstruction to the existence of a closed defining
two-form for F .

Proposition 6.1.16. Let ⇧ be a corank-one Poisson structure on M and let F be the induced
codimension-one symplectic foliation. Assume that the first obstruction class CF vanishes, and
fix a closed defining one-form ↵ for F . The second obstruction class �F vanishes identically if
and only if F has a closed defining two-form.

Proof. We have the following equivalences:

[j(µ)] = 0, j(µ) = d(j(⌘)) = j(d⌘) (⌘ 2 ⌦1(M))

, µ� d⌘ 2 ↵ ^ ⌦1(M)

, µ = d⌘ + � ^ ↵ (� 2 ⌦1(M)).

First assume that �F = 0. Let ! be a defining two-form for F with d! = µ^↵ and µ = d⌘+�^↵
for some ⌘, � 2 ⌦1(M). Consider !0 := ! � ⌘ ^ ↵. Then !0 is still a defining two-form for F
since for each leaf L 2 F :

i⇤L!
0 = i⇤L! � (i⇤L⌘) ^ (i⇤L↵)

= !L � (i⇤L⌘) ^ 0

= !L.

And !0 is closed since

d!0 = d! � (d⌘) ^ ↵+ ⌘ ^ d↵

= µ ^ ↵� (d⌘) ^ ↵
= (d⌘ + � ^ ↵) ^ ↵� (d⌘) ^ ↵
= (d⌘) ^ ↵� (d⌘) ^ ↵
= 0.

Hence if �F = 0, then we can find a closed defining two-form for F . Conversely, if ! is a closed
defining two-form for F , then d! = 0 = 0 ^ ↵, so that we can take µ = 0. It follows that

�F = [j(0)] = 0.
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Remark 6.1.17. We can now reformulate the results obtained in Section 5.3.1 as follows: A
corank-one Poisson structure (Z,⇧Z) is induced by a log-symplectic structure (on some ambient
manifold M) if and only if CF = �F = 0, where F is the symplectic foliation of (Z,⇧Z).

Throughout this section, as well as in what follows, we only consider codimension-one sym-
plectic foliations that are transversely orientable (i.e. defined by a one-form). We may wonder
how stringent the assumption of transverse orientability is. In fact, if F is a codimension-one
symplectic foliation of M , then the leafwise-symplectic forms induce an orientation on TF , so
that transverse orientability of F is equivalent with orientability of M .

6.2 Vanishing first invariant: unimodularity

Recall that to an orientable Poisson structure (M,⇧) one can canonically associate its modular
class [X⇧] 2 H1

⇧(M), which is the cohomology class of any modular vector field on M . The
Poisson structure (M,⇧) is called unimodular if this cohomology class [X⇧] is zero. We will now
show that unimodularity of (M,⇧) is closely related with the first invariant CF of its symplectic
foliation.

Let (M2n+1,⇧) be an orientable corank-one Poisson manifold and let F be its symplectic
foliation. We can choose a defining one-form ↵ 2 ⌦1(M) and a defining two-form ! 2 ⌦2(M) of
F . Then ⇥ := ↵ ^ !n is a volume form on M , as noted in (4.17). Let us compute the modular
vector field of ⇧ associated with this volume form. We calculate:

◆X
f

(↵ ^ !n) = ◆X
f

(↵) ^ !n � ↵ ^ ◆X
f

(!n)

= �↵ ^ ◆X
f

(!n)

= �n↵ ^ ◆X
f

(!) ^ !n�1,

using in the second equality that Xf is tangent to the leaves and therefore ◆X
f

(↵) = 0. Next,
note that for any leaf iL : L ,!M , we have

i⇤L

⇣

![(Xf )
⌘

= ![L (Xf |L)
= ![L

⇣

(⇧](df))|L
⌘

= ![L

⇣

⇧]L(i
⇤
L(df))

⌘

= �i⇤L(df),

where !L = �⇧�1
L is the symplectic form on the leaf L. Hence we have for each leaf L 2 F that

i⇤L

⇣

![(Xf ) + df
⌘

= 0,

so that by Corollary 6.1.7,

↵ ^
⇣

![(Xf ) + df
⌘

= 0.

Hence
↵ ^ ![(Xf ) = �↵ ^ df,

so that altogether

◆X
f

(↵ ^ !n) = �n↵ ^ ◆X
f

(!) ^ !n�1

= n↵ ^ df ^ !n�1.
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Therefore, we get by using Cartan’s magic formula:

£X
f

⇥ = d
�

◆X
f

(↵ ^ !n)
�

= nd(↵ ^ df ^ !n�1)

= n(d↵) ^ df ^ !n�1 � n↵ ^ d(df ^ !n�1)

= n� ^ ↵ ^ df ^ !n�1.

In the last equality, we used (6.3) and also (6.5), which implies that ↵ ^ d! = 0. On the other
hand, we have

£X
f

⇥ = X⇥
⇧ (f)⇥ = df(X⇥

⇧ )↵ ^ !n =
⇣

◆X⇥
⇧
df
⌘

↵ ^ !n,

so that
n↵ ^ df ^ � ^ !n�1 =

⇣

◆X⇥
⇧
df
⌘

↵ ^ !n.

Now, the equation

↵ ^ �ndf ^ � ^ !n�1
�

= ↵ ^
⇣⇣

◆X⇥
⇧
df
⌘

!n
⌘

implies

↵ ^
⇣

ndf ^ � ^ !n�1 �
⇣

◆X⇥
⇧
df
⌘

!n
⌘

= 0,

so that by Lemma 6.1.6 and Corollary 6.1.7

i⇤L

⇣

ndf ^ � ^ !n�1 �
⇣

◆X⇥
⇧
df
⌘

!n
⌘

= 0

for each leaf L 2 F . Now

i⇤L
�

ndf ^ � ^ !n�1
�

= ndfL ^ �L ^ !n�1
L ,

where !L = i⇤L!, fL = i⇤Lf and �L = i⇤L�. On the other hand, we have that X⇥
⇧ is tangent to

the leaves of F by Lemma 8.7.1 in the appendix. Using this fact, we have

i⇤L

⇣⇣

◆X⇥
⇧
df
⌘

!n
⌘

= i⇤L

⇣

◆X⇥
⇧
df
⌘

!n
L

=
⇣

◆X⇥
⇧
df
⌘

�

�

�

L
!n
L

= ◆X⇥
⇧ |

L

(i⇤L(df))!
n
L

=
⇣

◆X⇥
⇧ |

L

dfL
⌘

!n
L.

So on each leaf L 2 F , we have

ndfL ^ �L ^ !n�1
L =

⇣

◆X⇥
⇧ |

L

dfL
⌘

!n
L. (6.6)

Because dfL ^ !n
L is a (2n+ 1)-form on the 2n-dimensional manifold L, we have

◆X⇥
⇧ |

L

(dfL ^ !n
L) = 0,

which implies that
⇣

◆X⇥
⇧ |

L

dfL
⌘

!n
L = dfL ^

⇣

n◆X⇥
⇧ |

L

!L

⌘

^ !n�1
L . (6.7)

By (6.6) and (6.7), we get

dfL ^ !n�1
L ^

⇣

◆X⇥
⇧ |

L

!L � �L
⌘

= 0. (6.8)
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Since we started with arbitrary f 2 C1(M) and the map i⇤L : C1(M)! C1(L) is surjective,
it follows that (6.8) holds for all functions fL 2 C1(L). This implies that3

!n�1
L ^

⇣

◆X⇥
⇧ |

L

!L � �L
⌘

= 0.

Lemma 6.2.1 below then implies that

◆X⇥
⇧ |

L

!L = �L.

Lemma 6.2.1. Let (M2n,!) be a symplectic manifold. Then the map

� : ⌦1(M)! ⌦2n�1(M) : µ 7! !n�1 ^ µ

is an injective map of C1(M)-modules.

Proof. Suppose that !n�1 ^ µ = 0. Pick x 2 M and let (q1, p1, . . . , qn, pn) be Darboux coordi-
nates around x. We may then write locally around x:

! =
n
X

i=1

dqi ^ dpi and µ =
n
X

i=1

fidqi +
n
X

j=1

gjdpj ,

so that

!n�1 = (n� 1)!
n
X

i=1

dq1 ^ dp1 ^ · · · ^ \dqi ^ dpi ^ · · · ^ dqn ^ dpn.

Then by assumption

0 =

 

n
X

i=1

dq1 ^ dp1 ^ · · · ^ \dqi ^ dpi ^ · · · ^ dqn ^ dpn

!

^
0

@

n
X

i=1

fidqi +
n
X

j=1

gjdpj

1

A ,

which implies that

n
X

i=1

(fi✏idq1 ^ · · · ^ cdpi ^ · · · ^ dpn + gi✏
0
idq1 ^ · · · ^ cdqi ^ · · · ^ dpn) = 0,

where ✏i, ✏0i 2 {±1}. Then one necessarily has fi = gi = 0 for i = 1, . . . , n.

We have now proved the following:

3Indeed, let ⇠ 2 ⌦2n�1(L) and assume that df ^ ⇠ = 0 for all f 2 C1(L). Pick p 2 L and write in coordinates
(U, x1, . . . , x2n) around p:

⇠ =
2nX

i=1

⇠
i

dx1 ^ · · · ^ cdx
i

^ · · · ^ dx2n.

Let g 2 C1(L) be a smooth bump function supported inside U such that g ⌘ 1 near p. For the functions
gx

j

2 C1(L), we have by assumption

0 = d
p

(gx
j

) ^ ⇠
p

= d
p

x
j

^
 

2nX

i=1

⇠
i

(p)d
p

x1 ^ · · · ^ dd
p

x
i

^ · · · ^ d
p

x2n

!

= ±⇠
j

(p)d
p

x1 ^ · · · ^ d
p

x2n,

which implies that ⇠
j

(p) = 0. Therefore, ⇠ = 0.
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Proposition 6.2.2. Let (M2n+1,⇧) be an orientable corank-one Poisson structure with sym-
plectic foliation F . Fix a defining one-form ↵ and a defining two-form ! of F . Then the
modular vector field X⇥

⇧ with respect to the volume form ⇥ = ↵ ^ !n is the vector field which
on each symplectic leaf L 2 F satisfies

◆X⇥
⇧ |

L

!L = �L, (6.9)

where !L is the symplectic form on L, �L = i⇤L� and d↵ = � ^ ↵.
This statement makes sense. Although for a fixed defining one-form ↵, the di↵erential form

� is not uniquely determined, its pullback �L to a leaf L 2 F is unique. This was noted in i)
of Remark 6.1.9. Next, the property (6.9) indeed defines X⇥

⇧ uniquely: there exists only one
vector field satisying this property, on each leaf L given by

⇣

![L

⌘�1
(�L),

using non-degeneracy of !L. As a corollary of Proposition 6.2.2, we obtain the following criterion
for unimodularity.

Corollary 6.2.3. An orientable corank-one Poisson manifold (M2n+1,⇧) with induced sym-
plectic foliation F is unimodular if and only if the first obstruction class CF vanishes identically.

Proof. First assume that CF = 0. Choose a closed defining one-form ↵ 2 ⌦1(M) and a defining
two-form ! 2 ⌦2(M) for F . Then

0 = d↵ = � ^ ↵,
which implies that �L := i⇤L� = 0 for each leaf L 2 F (use Lemma 6.1.6 and Corollary 6.1.7).
By Proposition 6.2.2, we get that the modular vector field X⇥

⇧ for the volume form ⇥ := ↵^!n

satisfies

X⇥
⇧

�

�

L
=
⇣

![L

⌘�1
(�L) =

⇣

![L

⌘�1
(0) = 0

for each leaf L 2 F . Hence X⇥
⇧ = 0, which implies that (M2n+1,⇧) is unimodular.

Conversely, assume that (M2n+1,⇧) is unimodular. Fix a defining one-form ↵ and a defining
two-form ! for F . We then know that there exists h 2 C1(M) such that

X↵^!n

⇧ = Xh.

Proposition 2.9.6 implies that with respect to the volume form µ := eh↵ ^ !n := ↵0 ^ !n, we
have

Xµ
⇧ = Xh �Xlog(eh) = Xh �Xh = 0.

Note that ↵0 = eh↵ is also a defining one-form for F . Let �0 2 ⌦1(M) be such that

d↵0 = �0 ^ ↵0.

Since by Proposition 6.2.2

0 = Xµ
⇧

�

�

L
=
⇣

![L

⌘�1
(�0L),

we get that i⇤L�
0 = �0L = 0 for each leaf L 2 F . By Corollary 6.1.7, we get �0 = f↵0 for some

f 2 C1(M), so that
d↵0 = �0 ^ ↵0 = f↵0 ^ ↵0 = 0.

So ↵0 is a closed defining one-form for F , which implies that CF = 0 by Proposition 6.1.11.
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Remark 6.2.4. In particular, the singular locus of a log-symplectic manifold is a unimodular
corank-one Poisson manifold.

We present an alternative argument to obtain Corollary 6.2.3. Let (M2n+1,⇧) be an ori-
entable manifold with corank-one Poisson structure. Fix a defining one-form ↵ 2 ⌦1(M) and
a defining two-form ! 2 ⌦2(M) for the symplectic foliation F induced by ⇧. We consider the
complex of di↵erential forms along the leaves of F , with projection map j, as in (6.4):

(⌦•(M), d)
j�!

✓

⌦•(M)

↵ ^ ⌦•�1(M)
, d

◆

.

Lemma 6.2.5. The map

⇧] :
⌦k(M)

↵ ^ ⌦k�1(M)
! Xk(M) : j(�) 7! ⇧](�) (6.10)

is well-defined.

Proof. Assume j(�) = j(�0). Then �0 = � + ↵ ^ ⌘ for some ⌘ 2 ⌦k�1(M), so that

⇧](�0) = ⇧](�) +⇧](↵) ^⇧](⌘).

We argue that ⇧](↵) = 0. Let � 2 ⌦1(M) be arbitrary. Since ↵ vanishes on vector fields tangent
to the leaves of F , we have

0 = h↵,⇧](�)i = �h⇧](↵), �i.
So ⇧](↵) pairs to zero with any one-form on M , and therefore ⇧](↵) = 0. It follows that

⇧](�0) = ⇧](�), so that the map ⇧] is well-defined.

The maps (6.10) combine to a chain map (up to sign)

⇧] :

✓

⌦•(M)

↵ ^ ⌦•�1(M)
, d

◆

! (X•(M), d⇧) .

Indeed, we have for ⌘ 2 ⌦k(M):

�d⇧
⇣

⇧](j(⌘))
⌘

= �d⇧(⇧](⌘)) = ⇧](d⌘) = ⇧](j(d⌘)) = ⇧](d(j(⌘))),

using Lemma 2.8.4. So we get induced maps in cohomology

[⇧]] : Hk
F (M)! Hk

⇧(M) : [j(⌘)] 7! [⇧](⌘)],

denoting the foliated cohomology groups by H•
F (M). In degree one, we have the following

result, which is an observation of our own.

Lemma 6.2.6. The linear map

[⇧]] : H1
F (M)! H1

⇧(M)

is injective and up to sign, it takes the first obstruction class CF 2 H1
F (M) to the modular class

[X⇧] 2 H1
⇧(M), that is

[⇧]](CF ) = �[X⇧]. (6.11)
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Proof. Writing d↵ = � ^ ↵, we know that CF = [j(�)], so that CF is mapped to [⇧](�)]. We
will show that

⇧](�) = �X↵^!n

⇧ .

Since each leaf L 2 F is a Poisson submanifold of M with induced Poisson structure ⇧L, we
have

⇧](�)
�

�

�

L
= ⇧]L(�L) = �

⇣

![L

⌘�1
(�L) = � X↵^!n

⇧

�

�

L
,

using Proposition 6.2.2 in the last equality. This proves (6.11). As for injectivity of [⇧]], assume
that

0 = [⇧]] ([j(⌘)]) = [⇧](⌘)].

Then ⇧](⌘) is a Hamiltonian vector field, so there exists f 2 C1(M) such that ⇧](⌘) = ⇧](df).
This implies that on each leaf L 2 F :

⇧]L(i
⇤
L(⌘)) = ⇧]L(i

⇤
L(df)),

and hence i⇤L(⌘) = i⇤L(df) since ⇧]L is injective. So we get that for each leaf L 2 F :

i⇤L(⌘ � df) = 0,

which implies that j(⌘ � df) = 0 by Corollary 6.1.7. So j(⌘) = j(df) = d(j(f)), which implies
that

[j(⌘)] = [d(j(f))] = 0.

A particular consequence of Lemma 6.2.6 is Corollary 6.2.3. Note that the map [⇧]] in
Lemma 6.2.6 is not surjective in general: it only reaches classes represented by Poisson vector
fields that are tangent to the symplectic leaves. So classes with a representative that is transverse
to the leaves at some point do not lie in the image of [⇧]].

6.3 Vanishing first invariant: a stability theorem

We now prove a stability theorem for transversely orientable codimension-one foliations with
vanishing first invariant on compact connected manifolds. It is similar to Reeb’s global stability
theorem4.

Proposition 6.3.1. Let F be a transversely orientable codimension-one foliation on a compact
connected manifold M with CF = 0. We then have:

i) There exists a nontrivial family of di↵eomorphisms �t : M ! M , defined for t 2 R, that
takes leaves to leaves.

ii) If F contains a compact leaf L, then all leaves are compact.

iii) If F contains a compact leaf, then each leaf L of F has a saturated neighborhood U5 and
a projection f : U ! I ⇢ R such that the foliation F|U is given by the fibers of f .

4Reeb’s global stability theorem states the following: “Let F be a transversely orientable codimension-one
foliation of a compact connected manifold M . If F contains a compact leaf L with finite fundamental group,
then every leaf of F is di↵eomorphic to L. Furthermore, M is the total space of a fibration f : M ! S1 with
fiber L, and F is the fiber foliation {f�1(✓) : ✓ 2 S1}.”

5A saturated neighborhood is a neighborhood that is a union of leaves.
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Proof. i) Since CF = 0, we can choose a closed defining one-form ↵ 2 ⌦1(M) of F . Note that
↵ trivializes the conormal bundle (TM/TF)⇤, so that also the normal bundle TM/TF is
trivial. We can choose a global non-vanishing section v of TM/TF , and rescaling v we
can assume that ↵(v) = 1. In particular, v is transverse to the foliation F . Since M is
compact, we have that v is complete, and we claim that its flow {�t : M !M}t2R is the
family of di↵eomorphisms sought for. Note that

£v↵ = d(◆v↵) + ◆vd↵ = 0,

which implies that �⇤
t↵ = ↵ for all t 2 R. Indeed, we have

d

dt
(�⇤

t↵) =
d

ds

�

�

�

�

s=0

(�⇤
t+s↵) =

d

ds

�

�

�

�

s=0

[(�s � �t)
⇤ ↵] =

d

ds

�

�

�

�

s=0

[�⇤
t (�

⇤
s↵)]

= �⇤
t

✓

d

ds

�

�

�

�

s=0

�⇤
s↵

◆

= �⇤
t (£v↵) = 0,

so that �⇤
t↵ is constant. But as �⇤

0↵ = ↵, this then gives �⇤
t↵ = ↵ for all t 2 R. We now

show that each �t takes leaves to leaves. So let L 2 F be a leaf. We first show that �t(L)
is integral, i.e. that

T�
t

(p)�t(L) = Ker
�

↵�
t

(p)

�

for p 2 L. (6.12)

If w2 2 T�
t

(p)�t(L) then by surjectivity of ((�t)⇤)p there exists w1 2 TpL such that
w2 = ((�t)⇤)p (w1). We then have

↵�
t

(p)(w2) = ↵�
t

(p)

⇣

((�t)⇤)p (w1)
⌘

= (�⇤
t↵)p (w1) = ↵p(w1) = 0.

Hence we have the inclusion T�
t

(p)�t(L) ⇢ Ker
�

↵�
t

(p)

�

, so that the equality (6.12) follows
by counting dimensions. So �t(L) is integral, and since the leaves of F are the maximal
integral submanifolds of the distribution Ker(↵), there exists a leaf L0

t 2 F such that
�t(L) ⇢ L0

t. Composing with ��t gives L ⇢ ��t(L0
t). But the same argument shows that

��t(L0
t) lies inside some leaf L0

�t. Hence

L ⇢ ��t(L
0
t) ⇢ L0

�t,

so that L = L0
�t. In particular, L = ��t(L0

t), so that �t(L) = L0
t. So �t takes leaves to

leaves, and this finishes the first step.

ii) Let N be the union of all compact leaves in M . Then N is nonempty by assumption, and
moreover N is open. Indeed, if L is a compact leaf, then we can find an open neighborhood

{�t(L) : t 2 (�✏, ✏)}
of L that is contained in N . But also M \N is open: let L0 be a non-compact leaf and let
m 2 L0. Assume by contradiction that m would not be an interior point of M \N . Take
an open neighborhood

{�t(L
0) : t 2 (�✏, ✏)}

of m. Necessarily, this neighborhood then intersects a compact leaf L. So there exists
t0 2 (�✏, ✏) and m0 2 L0 such that �t0(m

0) 2 L. But then the leaves �t0(L
0) and L

intersect, so that �t0(L
0) = L. Hence L0 = ��t0(L) is compact, being the image of the

compact set L under the continuous map ��t0 . This is a contradiction. So m is an interior
point of M \N , showing that M \N is open. Since N is a nonempty clopen in M , and
M is connected, it follows that N = M .
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iii) Let L 2 F be a leaf (which is automatically compact). Since ↵ is closed and i⇤L↵ = 0,
the Relative Poincaré Lemma 1.3.9 gives a tubular neighborhood U of L and a function
f on U such that ↵ = df and f |L = 0. Shrinking U if necessary, we may assume that U is
saturated6, and since L is connected, we can choose U to be connected as well. Note that
f is a submersion, since dpf = ↵p 6= 0 at all point p 2 U . The leaves L0 inside U satisfy

0 = i⇤L0↵ = i⇤L0df = d(i⇤L0f) = d(f |L0), (6.13)

so that f is constant on each leaf. Since leaves are maximal with the property (6.13), it
follows that the leaves inside U are the level sets of f . At last, since U is connected and
f is an open map (being a submersion), we have that f(U) := I ⇢ R is an open interval.

By compactness of M , we can patch together the local pieces of information found in iii) of
Proposition 6.3.1 to obtain a global statement.

Proposition 6.3.2. Let F be a transversely orientable codimension-one foliation on a compact
connected manifold M with CF = 0, and assume that F has a compact leaf. Then there exists
a fiber bundle F : M ! S1 such that F coincides with the fiber foliation of F .

Proof. Let us first show that the leaf space M/F is a smooth manifold, when endowed with the
quotient topology of ⇡ : M !M/F .

i) By Proposition 6.3.1, we know that all leaves of F are compact. The leaf space of every
codimension-one foliation with compact leaves is Hausdor↵ [Eel, p. 364].

ii) The leaf space M/F is second countable. Indeed, the projection map ⇡ : M ! M/F is
open [CN, p.47], and it is well-known that open quotients of second countable spaces are
second countable.

iii) We now exhibit a smooth structure on M/F . Choose p 2M/F . We show that there exists
an open neighborhood of p that is homeomorphic with an open subset of R. Proposition
6.3.1 gives a saturated open U around ⇡�1(p) = L and a submersion f : U ! I ⇢ R such
that the leaves of F inside U are level sets of f . Then ⇡(U) is an open neighborhood of
p and we define a map  : ⇡(U)! I ⇢ R by the following commutative diagram:

U I

⇡(U)

f

⇡|
U  

(6.14)

That is, we define  (Lq) = f(q), where q 2 U and Lq is the leaf through q. We claim that
 : ⇡(U) ! I ⇢ R is a homeomorphism. First note that  is injective: if  (Lq) =  (Lr)
then f(q) = f(r) so that q and r lie in the same level set of f . That is, q and r belong
to the same leaf, so Lq = Lr. Next,  is surjective: if c 2 I then there exists q 2 U with
f(q) = c by surjectivity of f , so that  (⇡(q)) = f(q) = c. Continuity of  is automatic: by
the universal property of the quotient topology, we have that  is continuous if and only

6Here we use that all leaves of F are compact. Reeb proved in his thesis that the projection ⇡ : M ! M/F
onto the leaf space is a closed map when F is a codimension-one foliation with compact leaves and M/F is
endowed with the quotient topology [CO, p. 277]. Since the projection ⇡ : M ! M/F is closed, we may find a
saturated open neighborhood W of L such that L ⇢ W ⇢ U . This is proved in [Kan, Proposition 1.2.6].
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if  � ⇡|U is continuous. But  � ⇡|U = f is smooth, hence certainly continuous. At last,
we check that  �1 is continuous. If V is open in ⇡(U), then we can write V = O \ ⇡(U)
where O ⇢M/F is open. Then ⇡�1(O) is open in M . Since U is saturated, we have,

⇡�1(O \ ⇡(U)) = ⇡�1(O) \ ⇡�1(⇡(U)) = ⇡�1(O) \ U,

so that ⇡|�1
U (V ) is open in U . Since f is a submersion, it is an open map, and therefore

 (V ) = f(⇡|�1
U (V ))

is open in I. We have now showed that M/F is covered by charts (⇡(U), )

iv) It remains to show that these charts are smoothly compatible. Assume we are given charts
' : ⇡(U)! J and  : ⇡(V )! I such that ⇡(U) \ ⇡(V ) 6= ;. We show that the map

 � '�1 : '(⇡(U) \ ⇡(V ))!  (⇡(U) \ ⇡(V ))

is smooth. Note that, since U and V are saturated, we have

⇡�1 (⇡(U) \ ⇡(V )) = ⇡�1(⇡(U)) \ ⇡�1(⇡(V )) = U \ V,

so that
⇡(U \ V ) = ⇡

�

⇡�1 (⇡(U) \ ⇡(V ))
�

= ⇡(U) \ ⇡(V ),

using surjectivity of ⇡ in the last equality. Hence we get a commutative diagram

U \ V  (⇡(U) \ ⇡(V ))

⇡(U) \ ⇡(V ) ' (⇡(U) \ ⇡(V ))

f

⇡|
U\V

g

 
'

with surjective submersions f : U\V !  (⇡(U) \ ⇡(V )) and g : U\V ! ' (⇡(U) \ ⇡(V ))
as above. Inserting the map  � '�1 gives a commutative diagram

U \ V  (⇡(U) \ ⇡(V ))

' (⇡(U) \ ⇡(V ))

f

g  � '�1 . (6.15)

Indeed, for all p 2 U \ V we have

�

 � '�1
�

(g(p)) =
�

 � '�1
�

('(⇡(p))) =  (⇡(p)) = f(p).

Since g is a smooth surjective submersion and f is smooth, also  �'�1 is smooth because
of the commutative diagram (6.15). For a proof of this fact, see [Lee, Theorem 4.29].

We have now established that M/F is a smooth one-dimensional manifold. It is connected
and compact, being the image of the connected compact space M under the continuous map
⇡ : M ! M/F . Therefore M/F is di↵eomorphic to S1, and we obtain our candidate fibration
F : M ! S1 as the composition

M
⇡�!M/F ⇠�! S1.
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The map ⇡ is smooth: its local representation in charts ↵ on M and  on M/F is by 6.14

 � ⇡ � ↵�1 = f � ↵�1,

which is smooth. Hence also F : M ! S1 is a smooth map. To see that F : M ! S1 is indeed a
fibration, it su�ces to show that F is a proper surjective submersion, by Ehresmann’s Lemma7.
For sure F is surjective, being a composition of surjective maps. Next, we note that ⇡ is a
submersion. Indeed, around p 2 M we find an open U , a submersion f : U ! I ⇢ R and a
chart  : ⇡(U)! I ⇢ R such that  � ⇡|U = f (see (6.14)). Taking derivatives, we get

dp ( � ⇡|U ) = d⇡(p) � dp⇡ = dpf,

so that dp⇡ is a composition of surjective maps

dp⇡ = d⇡(p) 
�1 � dpf.

Hence ⇡ is a submersion, and therefore F is a submersion as well. At last, we check that
F : M ! S1 is proper. If C ⇢ S1 is compact, then C is closed since S1 is Hausdor↵. By
continuity of F , we get that F�1(C) is a closed subset of the compact space M , so that F�1(C)
is compact as well. By Ehresmann’s Lemma, F : M ! S1 is indeed a fiber bundle, and the
fibers of F clearly coincide with the leaves of F .

In particular, the leaves of F are all di↵eomorphic, being the fibers of the fibration F : M ! S1.
We have now proved the following stability theorem:

Theorem 6.3.3. Let F be a transversely orientable codimension-one foliation of a compact
connected manifold M with CF = 0. If F contains a compact leaf L, then every leaf of F is
di↵eomorphic to L. Furthermore, M is the total space of a fibration F : M ! S1 with fiber L,
and F is the fiber foliation {F�1(✓) : ✓ 2 S1}.

The condition that CF = 0 is clearly necessary: if we have such a fibration F : M ! S1,
then F ⇤(d✓) is a closed defining one-form for the foliation F , where ✓ is the “coordinate” on
the circle.

We now further specify the fiber bundle structure F : M ! S1 obtained in Theorem 6.3.3.
The fibers of F are the leaves of F , and in Proposition 6.3.1 we constructed a vector field v
transverse to the leaves. Therefore, this vector field v defines an Ehresmann connection on M ,
at all points p 2M given by

Hp := Rvp.

We can then lift the loop in S1 as follows: let � : [0, 1]! S1 be a parametrization of the circle.
The tangent vector field �0 has a unique horizontal lift (�0)H to M . That is, (�0)H satisfies

(

(�0)Hp 2 Hp for all p 2M

(F⇤)p
�

(�0)Hp
�

= �0F (p) for all p 2M
.

Let  p be the integral curve of (�0)H , starting at p 2 F�1(�(0)). By compactness of M , we
have that  p is defined for all time, and  p lifts the loop in S1 horizontally, namely

(

 0
p(t) = (�0)H 

p

(t) 2 H 
p

(t)

F �  p = �
.

7Ehresmann’s Lemma states: “If f : M ! N is a proper surjective submersion between smooth manifolds,
then f is a locally trivial fibration.” Recall that a map f : X ! Y between topological spaces is said to be proper
if inverse images of compact subsets of Y are compact in X.
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Definition 6.3.4. In the above setup, let L = F�1(�(0)) 2 F . The holonomy map is the
di↵eomorphism � defined by

� : L! L : p 7!  p(1),

where  p is the integral curve of (�0)H starting at p.

We then obtain:

Corollary 6.3.5. Let F be a transversely orientable codimension-one foliation of a compact
connected manifold M with CF = 0, and assume that the foliation contains a compact leaf L.
Then the manifold M is the mapping torus8 of the di↵eomorphism � : L ! L given by the
holonomy map of the fibration over S1.

Proof. We are given fiber bundles F : M ! S1 and q : L⇥[0,1]
(x,0)⇠(�(x),1) ! S1 with typical fiber L.

A fiber bundle isomorphism between the two is given by

L⇥[0,1]
(x,0)⇠(�(x),1) M

[0,1]
0⇠1

[0,1]
0⇠1

'

q F

t 7! 1� t

,

where '(p, t) =  p(1� t) and  p is the integral curve of (�0)H starting at p. Note that the map
' is well-defined since

 p(1) = �(p) =  �(p)(0).

6.4 Vanishing first and second invariant: a stability theorem

Now assume that (M2n+1,⇧) is an orientable corank-one Poisson structure, and let F be its
symplectic foliation. We want to see what happens when both invariants CF and �F vanish.
Recall from Proposition 6.1.11 and Proposition 6.1.16 that this is the case exactly when F has
a closed defining one-form and a closed defining two-form.

Proposition 6.4.1. Let (M2n+1,⇧) be an orientable corank-one Poisson structure with sym-
plectic foliation F . The invariants CF and �F vanish if and only if there exists a Poisson vector
field transverse to the leaves of F .

Proof. This is the equivalence ii) , iii) in Theorem 5.3.1. It is merely a consequence of
Theorem 5.1.1. Concretely, given defining one- and two-forms ↵ and !, we consider the vector
field v uniquely defined by

(

↵(v) = 1

◆v! = 0
. (6.16)

Conversely, given a vector field v on M transverse to F , we consider defining one- and two-forms
↵ and ! uniquely specified by the equations (6.16). We showed in the proof of Theorem 5.1.1
that v is Poisson if and only if d↵ = d! = 0.

8The mapping torus of a di↵eomorphism � : L ! L is L⇥[0,1]
(x,0)⇠(�(x),1) . For instance, if L = (�✏, ✏) and � = �Id,

then we obtain the Möbius strip.
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Let (M2n+1,⇧) be an orientable corank-one Poisson structure with symplectic foliation F .
Assume moreover that M is compact and connected, that CF = �F = 0 and that F contains
a compact leaf L. The conclusions of previous section remain valid, the only di↵erence being
that the transverse vector field v, the flow of which takes leaves to leaves, is now a Poisson
vector field. The foliated manifold M again has a fiber bundle structure, with an Ehresmann
connection defined by the vector field v. Since the parallel transport of the connection preserves
the symplectic structure on the leaves, we obtain:

Theorem 6.4.2. Let (M2n+1,⇧) be an orientable compact connected regular Poisson structure
of corank one, and let F be its symplectic foliation. If CF = �F = 0 and F contains a compact
leaf L, then every leaf of F is symplectomorphic to L. Furthermore, M is the total space of a
fibration over S1 and it is the mapping torus of the symplectomorphism � : L! L given by the
holonomy map of the fibration over S1.

Proof. We only have to check that the flow �t of the transverse Poisson vector field v above
preserves the symplectic structures on the leaves. Suppose (L,!) and (L0,!0) are symplectic
leaves of F , and that �t(L) = L0. We have to show that (�t|L)⇤ (!0) = !. We first note that

(�t|L)⇤⇧L = ⇧L0 ,

where ⇧L and ⇧L0 are the Poisson structures on L and L0 induced by ⇧. Indeed, since �t is a
Poisson di↵eomorphism, we have (�t)⇤⇧ = ⇧, so that restricting to L we get

(�t|L)⇤ (⇧L) = ⇧|�
t

(L) = ⇧L0 .

This implies that for all p 2 L

⇣

⇧]L0

⌘

�
t

(p)
= (dp(�t|L)) �

⇣

⇧]L

⌘

p
� (dp(�t|L))⇤ ,

hence
⇣

(!0)[�
t

(p)

⌘�1
= (dp(�t|L)) �

⇣

![p

⌘�1 � (dp(�t|L))⇤ ,
so that

(!0)[�
t

(p) =
⇣

(dp(�t|L))�1
⌘⇤ � ![p � (dp(�t|L))�1 .

It follows that for v, w 2 TpL, we have

⇥

(�t|L)⇤ !0⇤
p
(v, w) = !0

�
t

(p) (dp(�t|L)(v), dp(�t|L)(w))
=
�

!0�[
�

t

(p)
(dp(�t|L)(v)) (dp(�t|L)(w))

=
h⇣

(dp(�t|L))�1
⌘⇤ � ![p(v)

i

(dp(�t|L)(w))
=
h

![p(v) � (dp(�t|L))�1
i

(dp(�t|L)(w))
= ![p(v)(w)

= !p(v, w).

Hence �t|L : (L,!)! (L0,!0) is a symplectomorphism.

In particular, this theorem applies to the singular locus (Z,⇧Z) of a log-symplectic structure,
provided that Z is compact and connected and that the foliation of ⇧Z has a compact leaf.
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Chapter 7

Outlook

In this chapter, we give a brief overview of some aspects of log-symplectic structures and related
concepts that were not treated in detail in this thesis.

7.1 Deformations of log-symplectic structures

In [MO], one describes the space of Poisson bivectors near a given log-symplectic structure, up
to small di↵eomorphisms. Their main statement is the following:

Theorem 7.1.1. Let (M,Z,⇧) be a compact log-symplectic manifold. Consider !1, . . . ,!l

closed two-forms on M and �1, . . . , �k closed one-forms on Z such that their cohomology classes
form a basis of H2(M) and of H1(Z) respectively. For ✏ 2 Rl and � 2 Rk, denote by
!✏ :=

Pl
i=1 ✏i!i and �� :=

Pk
i=1 �i�i. Then:

i) For small enough ✏ 2 Rl and � 2 Rk, we have that the bivector ⇧!✏

�
�

defined by

�

⇧!✏

�
�

��1
:= ⇧�1 + !✏ + d log(�) ^ p⇤ (��)

is a log-symplectic structure on M with singular locus Z. Here p : E ! Z is a tubular
neighborhood of Z, and � is a distance function adapted to Z, as in Lemma 4.1.16.

ii) There is a C1-open neighborhood U ⇢ �(^2TM) around ⇧, such that every Poisson
structure ⇧0 2 U is isomorphic to ⇧!✏

�
�

for some vectors ✏ 2 Rl, � 2 Rk.

iii) There is a C1-neighborhood D ⇢ Di↵(M) around IdM such that for ' 2 D, the equality

'⇤
�

⇧!✏

�
�

�

= ⇧
!
✏

0
�
�

0 implies ✏ = ✏0 and � = �0.

Let us make some remarks on the di↵erent items in above theorem.

i) The given log-symplectic structure ⇧ has an inverse b-symplectic form ⇧�1 = !, that can
be decomposed as

! = ↵+ d log(�) ^ p⇤(✓),

for closed di↵erential forms ↵ 2 ⌦2(M) and ✓ 2 ⌦1(Z). Adding a C0-small closed b-two-
form µ to ! yields another b-symplectic form, since non-degeneracy is an open condition.
This implies part i) of Theorem 7.1.1. If we decompose

µ = ! + d log(�) ^ p⇤(�),
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for small closed di↵erential forms ! 2 ⌦2(M) and � 2 ⌦1(Z), then the deformed log-
symplectic structure is the inverse of

! + µ = ↵+ ! + d log(�) ^ p⇤(✓ + �).

This deformation has the following geometric interpretation:

• On one hand, we deform ⇧ by adding the restriction of ! to the symplectic form on
each leaf of ⇧. This type of transformation is called a Gauge transformation. It can
be applied to any Poisson structure.

• On the other hand, we transform ⇧ by changing the foliation on the singular locus
Z: the foliation is no longer given by the kernel of ✓, but it now integrates the kernel
of ✓ + �. This type of transformation is specific to log-symplectic structures.

In fact, these two types of deformations cover all Poisson structures C1-close to a log-
symplectic structure, by ii) of Theorem 7.1.1.

ii) To have any hope at all that Poisson bivectors near a log-symplectic structure ⇧ are again
log-symplectic, one has to interpret “near” in the C1-sense. If ⇧0 is a C0-small deformation
of ⇧, then ^n⇧0 might very well no longer be transverse to the zero section of ^2nTM . In
order to preserve transversality, we need that the derivatives of ⇧ (in a local trivialization)
are not changed too much. That is, we have to consider C1-deformations of ⇧.
To prove ii) in Theorem 7.1.1, one argues as follows. First one proves that a Poisson
structure ⇧0 that is C1-close to the log-symplectic structure ⇧ is also log-symplectic,
possibly with di↵erent singular locus Z 0. Then one finds a di↵eomorphism  (⇧0) that
takes ⇧0 to a log-symplectic structure with singular locus Z. If !0 is the b-symplectic form
inverse to  (⇧0)⇤(⇧0), then it turns out that the class [!0] 2 bH2(M) is of the form [!✏,�],
where

!✏,� := ! + !✏ + d log(�) ^ p⇤(��).

One then obtains the conclusion ii) by applying a b-version of Moser’s theorem1.

Recall that by the b-Mazzeo-Melrose Theorem 4.3.1, we have that bH2(M) ⇠= H2(M)�H1(Z)
via

[!] 7! ([↵], [✓]) ,

where ↵+ d log(�) ^ p⇤(✓). Moreover, it is proved in [MO] that the pair ([↵], [✓]) is canonically
associated with !. So we can summarize Theorem 7.1.1 as follows: the Poisson structures C1-
close to ⇧ are parameterized by an open neighborhood of 0 in bH2(M) ⇠= H2(M)�H1(Z), up
to C1-small di↵eomorphisms.
This is in perfect analogy with the symplectic case: if (M,!) is a compact symplectic manifold,
then the space of symplectic structures C0-near ! modulo di↵eomorphisms connectable with
the identity map corresponds to an open neighborhood of 0 in H2(M).
At last we recall that heuristically, the deformations of a Poisson structure ⇧ are governed by the
second Poisson cohomology group H2

⇧(M). Theorem 7.1.1 makes this description very accurate
in case ⇧ is a log-symplectic structure, since we showed in Chapter 4 that H2

⇧(M) ⇠= bH2(M)
in that case.

1Lemma 2 in [MO]: “Let ⇣ 2 b⌦2(M) be b-symplectic form on a compact b-manifold (M,Z). If ⇣0 2 b⌦2(M)
is a closed b-two-form such that (1 � t)⇣ + t⇣0 is non-degenerate for all t 2 [0, 1] and [⇣] = [⇣0] 2 bH2(M), then
there exists a b-di↵eomorphism ' : (M,Z)

⇠! (M,Z) such that '⇤(⇣0) = ⇣.”
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Example 7.1.2. Consider S2 ⇢ R3, endowed with cylindrical coordinates ✓ and z. A log-
symplectic structure on S2 is given by

⇧ = z
@

@✓
^ @

@z
,

as shown in Example 3.1.5. Its singular locus is the equator S1 $ {z = 0}, and the inverse
b-symplectic form is

! = ⇧�1 =
dz

z
^ d✓.

Since the two-form dz^d✓ on S2 is closed but not exact, its class [dz^d✓] generates H2(S2) ⇠= R.
Similarly, the angular form d✓ on S1 is closed but not exact, so that its class [d✓] generates
H1(S1) ⇠= R. Theorem 7.1.1 now implies that every Poisson structure C1-close to ⇧ is isomor-
phic to one of the form

⇧✏,� :=

✓

dz

z
^ d✓ + ✏dz ^ d✓ + �

dz

z
^ d✓

◆�1

=
z

1 + ✏z + �

@

@✓
^ @

@z
.

7.2 Submanifold theory

Submanifold theory has been studied intensely in symplectic geometry. An important class
of submanifolds consists of the Lagrangian ones, which are the half-dimensional submanifolds
N ⇢ (M,!) on which the symplectic form ! vanishes. Weinstein’s well-known Lagrangian
neighborhood theorem gives a normal form near a Lagrangian submanifold, namely:

Theorem 7.2.1 (Weinstein). If L ⇢ (M,!) is a Lagrangian submanifold of a symplectic man-
ifold (M,!), then there exist a neighborhood U of L in M , a neighborhood V of L in T ⇤L and
a symplectomorphism f : (U,!)! (V,!T ⇤L) that is the identity on L.

Moreover, it is well-known that the graph of a one-form ↵ 2 �(T ⇤L) = ⌦1(L) is a Lagrangian
submanifold of T ⇤L if and only if ↵ is closed. Therefore, the Lagrangian submanifolds near a
given Lagrangian submanifold L correspond to small closed one-forms on L. One can show that
the moduli space2

{Lagrangian submanifolds near L}
Hamiltonian di↵eomorphisms

is an open subset of H1(L). Hence it is smooth and finite dimensional if L is compact.
Also for a Poisson manifold, there is a notion of Lagrangian submanifold C, defined by asking

that for any symplectic leaf S of the Poisson manifold, TpC \ TpS is a Lagrangian subspace3 of

the symplectic vector space
⇣

TpS, (!S)p

⌘

.

The submanifold theory of log-symplectic manifolds has not yet been addressed in the litera-
ture. One might be interested, for instance, in extending Weinstein’s Lagrangian neighborhood
theorem to the setting of log-symplectic manifolds. A related problem might be to describe the
deformations of a Lagrangian submanifold L of a log-symplectic manifold, and to determine the
moduli space of deformations.

2An isotopy {h
t

} is called Hamiltonian if there exists a smooth family of functions H
t

: M ! R such that

◆
Xt! = dH

t

,

where {X
t

} is the time-dependent vector field associated with {h
t

}. A Hamiltonian di↵eomorphism is a sym-
plectomorphism � for which there exists a Hamiltonian isotopy {h

t

} such that � = h1.
3That is, dim (T

p

C \ T
p

S) = 1
2 dim(T

p

S) and (!
S

)
p

���
(TpC\TpS)⇥(TpC\TpS)

= 0.
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7.3 Generalizations

We defined log-symplectic structures as Poisson structures that degenerate linearly along a
hypersurface. Various generalizations are possible by allowing more complicated degeneracies.
For instance, the description of log-symplectic structures in terms of the b-tangent bundle
immediately leads to a notion slightly more general than that of log-symplectic manifolds,
in which the singular locus Z is no longer a smooth hypersurface. These structures also appear
under the name “log-symplectic”.

Definition 7.3.1. Fix a 2n-dimensional manifold M , and let Z be a union of smooth hypersur-
faces of normal crossing type4 (i.e. locally there is a chart for which Z is a union of a collection
of coordinate hyperplanes in R2n). Let logZ denote the Lie algebroid whose sections are the
vector fields on M tangent to Z. A Poisson tensor ⇧ 2 �(^2TM) is called log-symplectic if it
is the image under the anchor map of a closed non-degenerate section of ^2(logZ)⇤.

In the same flavor, Lanius considered star log-symplectic structures, whose degeneracy loci
are locally modeled by a finite set of lines in the plane intersecting at a point. She classified
these structures on compact oriented manifolds in [Lan].

One can also consider higher order singularities. For a manifold M with specified hypersur-
face Z ⇢ M , we defined the b-tangent bundle to be the vector bundle whose sections are the
vector fields on M that are tangent to Z. Similarly, one can define a vector bundle, called the
bk-tangent bundle, whose sections are vector fields with “order k tangency to Z”, in some sense
that is made precise in [Sco]. If Z is locally given by y = 0, then one has

bkTpM =

(

TpM if p /2 Z

TpZ +
D

yk @
@y

E

if p 2 Z
; bkT ⇤

pM =

(

T ⇤
pM if p /2 Z

T ⇤
pZ +

D

dy
yk

E

if p 2 Z
.

The sections of the exterior algebra of bkT ⇤M are bk-forms. They form a complex, the cohomol-
ogy of which again allows a Mazzeo-Melrose type of decomposition theorem. A bk-symplectic
form is a closed bk-two-form of full rank, and the classical theorems from symplectic geometry
generalize further to the bk-category. For instance, a bk-version of Moser’s theorem yields the
bk-Darboux theorem, which states that a bk-symplectic form ! on (M,Z) locally looks like

! =
dx1
xk1
^ dy1 +

n
X

i=2

dxi ^ dyi,

where Z is locally defined by x1 = 0 [MP].
A Poisson structure is said to be of bk-type if it is dual to a bk-symplectic form. On a

surface for instance, such Poisson structures are given by f⇧0, where ⇧0 is dual to a symplectic
form and f is locally the k-th power of a defining function for Z. Scott classified these Poisson
structures of bk-type on compact oriented surfaces in [Sco].

Of course, many aspects of log-symplectic structures still remain untreated in this thesis,
like the associated symplectic groupoids, integrable systems... [GMP2].

4This concept appeared for instance in [GLPR, p. 4], under the name “normal crossing divisor”.
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Chapter 8

Appendices

8.1 On skew-symmetric bilinear maps

Proposition 8.1.1 (Standard form). Let V be an n-dimensional real vector space, and let
 : V ⇥ V ! R be a skew-symmetric bilinear map. Then there exists a basis {v1, . . . , vn} with
respect to which the matrix

⇥

 (vi, vj)
⇤

i,j
has the form

[ ] =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0 1
�1 0 0

0 1
�1 0 0

. . .

0 0 1
�1 0

0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

In particular, the rank of  is even.

Proof. ([Ca]) By induction on n = dim(V ). If  ⌘ 0, then we are done. Otherwise, there exist
v1, v2 2 V with  (v1, v2) 6= 0. Rescaling these vectors, we can assume that  (v1, v2) = 1.
Let W := span{v1, v2} and W? := {v 2 V :  (v, w) = 0 for all w 2W}. Then V = W �W?:

• W \W? = {0}: Suppose that v = av1 + bv2 2W \W?. Then

(

0 =  (v, v1) = �b
0 =  (v, v2) = a

) v = 0.

• V = W +W?: Suppose that v 2 V has  (v, v1) = c and  (v, v2) = d. Then

v = (�cv2 + dv1) + (v + cv2 � dv1) 2W +W?.

By the induction hypothesis, there exists a basis {v3, . . . , vn} of W? with respect to which  |W?

is represented by a matrix of the desired form. Since  |W has matrix

✓

0 1
�1 0

◆

with respect to

{v1, v2}, it follows that the basis {v1, v2, v3, . . . , vn} satisfies the criteria.
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Lemma 8.1.2. Let V be a 2n-dimensional real vector space, and  : V ⇥ V ! R a skew-
symmetric bilinear form. Then  is non-degenerate if and only if ^n 6= 0.

Proof. Assume that  is non-degenerate. By Proposition 8.1.1, there exists a basis {e1, f1, . . . , en, fn}
of V with respect to which the matrix of  is

[ ] =

2

6

6

6

6

6

4

0 1
�1 0 0

. . .

0 0 1
�1 0

3

7

7

7

7

7

5

.

Then {e⇤i ^ e⇤j , f⇤
i ^ f⇤

j , e⇤a ^ f⇤
b : 1  i < j  n, 1  a, b  n} is a basis of

V2 V ⇤, with respect
to which

 =
n
X

i=1

e⇤i ^ f⇤
i .

Indeed, on basis vectors of {e1, f1, . . . , en, fn}, we have

• �

Pn
i=1 e

⇤
i ^ f⇤

i

�

(ek, ej) =
n
X

i=1

�

�

�

�

ek(e⇤i ) ek(f⇤
i )

ej(e⇤i ) ej(f⇤
i )

�

�

�

�

= 0 =  (ek, ej).

• �

Pn
i=1 e

⇤
i ^ f⇤

i

�

(fk, fj) =
n
X

i=1

�

�

�

�

fk(e⇤i ) fk(f⇤
i )

fj(e⇤i ) fj(f⇤
i )

�

�

�

�

= 0 =  (fk, fj).

• �

Pn
i=1 e

⇤
i ^ f⇤

i

�

(ek, fj) =
n
X

i=1

�

�

�

�

ek(e⇤i ) ek(f⇤
i )

fj(e⇤i ) fj(f⇤
i )

�

�

�

�

=
Pn

i=1 �ik�ij = �kj =  (ek, fj).

Hence

^n = ^n
 

n
X

i=1

e⇤i ^ f⇤
i

!

=
X

�2S
n

(e⇤�(1) ^ f⇤
�(1)) ^ · · · ^ (e⇤�(n) ^ f⇤

�(n))

=
X

�2S
n

(e⇤1 ^ f⇤
1 ) ^ · · · ^ (e⇤n ^ f⇤

n) = n! e⇤1 ^ f⇤
1 ^ · · · ^ e⇤n ^ f⇤

n.

In particular,

^n (e1, f1, . . . , en, fn) = n!

�

�

�

�

�

�

�

�

�

e1(e⇤1) e1(f⇤
1 ) · · · e1(f⇤

n)
f1(e⇤1) f1(f⇤

1 ) · · · f1(f⇤
n)

...
...

...
...

fn(e⇤1) fn(f⇤
1 ) · · · fn(f⇤

n)

�

�

�

�

�

�

�

�

�

= n! 6= 0.

If  is degenerate, then it has rank 2k for some k < n. Proposition 8.1.1 gives a basis
{e1, f1, . . . , ek, fk, . . . , en, fn} of V with respect to which the matrix of  is

[ ] =

2

6

6

6

6

6

6

6

4

0 1
�1 0 0

. . . 0
0 0 1

�1 0
0 0(2n�2k)

3

7

7

7

7

7

7

7

5

,
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where 0(2n�2k) is the zero matrix of dimensions (2n�2k)⇥(2n�2k). As earlier,  =
Pk

i=1 e
⇤
i^f⇤

i ,
and the graded symmetry of ^ implies that

^n = ^n
 

k
X

i=1

e⇤i ^ f⇤
i

!

= 0.

8.2 Calculus with di↵erential forms

Lemma 8.2.1 (Cartan’s magic formula). If X 2 X(M) is a vector field and ! 2 ⌦k(M) is a
di↵erential form, then

£X! = d◆X! + ◆Xd!.

Proof. By induction on the degree k of !.
If f 2 ⌦0(M) = C1(M), then d◆Xf + ◆Xdf = ◆Xdf = df(X) = £Xf .
Assume that the formula holds for (k�1)-forms. By linearity of the operators £X and d◆X+◆Xd,
it is enough to prove the formula for ! = fdx1 ^ · · · ^ dxk. We write ! = dx1 ^ !1 for
!1 := fdx2 ^ · · · ^ dxk. Since £X is a degree zero derivation of ^, we get

£X! = £X(dx1 ^ !1) = (£Xdx1) ^ !1 + dx1 ^£X!1.

On the other hand, since d and ◆X are degree 1 resp. �1 derivations of ^, we obtain

d◆X! + ◆Xd! = d◆X(dx1 ^ !1) + ◆Xd(dx1 ^ !1)

= d ((◆Xdx1) ^ !1 � dx1 ^ ◆X!1)� ◆X(dx1 ^ d!1)

= (d◆Xdx1) ^ !1 + (◆Xdx1) ^ d!1 + dx1 ^ d◆X!1 � (◆Xdx1) ^ d!1 + dx1 ^ ◆Xd!1

= (d£Xx1) ^ !1 + dx1 ^£X!1

= (£Xdx1) ^ !1 + dx1 ^£X!1,

where the penultimate equality holds by the case k = 0 and the induction hypothesis. In the
last equality, we used that £X and d commute.

Let {⇢t} be an isotopy on a manifold M with corresponding time-dependent vector field
{Xt}, that is

d

dt
⇢t = Xt � ⇢t. (8.1)

Recall that the Lie derivative of a di↵erential form ! 2 ⌦k(M) with respect to the time-
dependent vector field {Xt} is defined as

£X
t

! =
d

dt

�

�

�

�

t=0

⇢⇤t!.

We have the following formula:

Lemma 8.2.2. Let {⇢t} be an isotopy on a manifold M with corresponding time-dependent
vector field {Xt}. Then

d

dt
⇢⇤t! = ⇢⇤t£X

t

! for any ! 2 ⌦(M).
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Proof. ([Ler]) For fixed t 2 [0, 1], we define operators Q1 and Q2 on ⌦(M) by

Q1(!) =
d

dt
⇢⇤t!,

Q2(!) = ⇢⇤t (£X
t

!).

We have to show that Q1 = Q2. To do this, it is enough to carry out the following steps:

1. Show that Q1 and Q2 coincide on functions.

2. Check that Q1 and Q2 commute with d.

3. Show that Qi(⌫ ^ µ) = Qi(⌫) ^ ⇢⇤tµ+ (⇢⇤t ⌫) ^Qi(µ) for i = 1, 2.

For 1., we take f 2 C1(M) and x 2M . We compute

d

dt
(⇢⇤t f)(x) =

d

dt
(f(⇢t(x))) =

⌦

df(⇢t(x)), Xt(⇢t(x))
↵

= (£X
t

f) (⇢t(x)) = ⇢⇤t (£X
t

f) (x),

where the second equality holds by the chain rule and Equation (8.1).
As for 2., we note that d�⇢⇤t = ⇢⇤t �d. Applying d/dt to both sides and using that d/dt commutes
with d gives Q1 � d = d �Q1. Similarly, using that d � ⇢⇤t = ⇢⇤t � d and that d � £X

t

= £X
t

� d,
we get Q2 � d = d �Q2.
For 3., we first note that ⇢⇤t (⌫ ^ µ) = (⇢⇤t ⌫) ^ (⇢⇤tµ). Di↵erentiating both sides with respect to t
gives

d

dt
(⇢⇤t (⌫ ^ µ)) =

✓

d

dt
(⇢⇤t ⌫)

◆

^ (⇢⇤tµ) + (⇢⇤t ⌫) ^
✓

d

dt
(⇢⇤tµ)

◆

,

which shows 3. for Q1. Similarly, since £X
t

(⌫ ^ µ) = (£X
t

⌫) ^ µ+ ⌫ ^ (£X
t

µ), we get

⇢⇤t (£X
t

(⌫ ^ µ)) = (⇢⇤t£X
t

⌫) ^ (⇢⇤tµ) + (⇢⇤t ⌫) ^ (⇢⇤t£X
t

µ) ,

which shows 3. for Q2.

We need the following improved version of Lemma 8.2.2.

Lemma 8.2.3. Let {⇢t} be an isotopy on a manifold M with corresponding time-dependent
vector field {Xt}. Then

d

dt
⇢⇤t!t = ⇢⇤t

✓

£X
t

!t +
d!t

dt

◆

,

for any smooth family of k-forms !t.

Proof. ([Ca]) If f(x, y) is a function of two variables, then we have by the chain rule

d

dt
f(t, t) =

d

dx

�

�

�

�

x=t

f(x, t) +
d

dy

�

�

�

�

y=t

f(t, y).

Therefore,

d

dt
⇢⇤t!t =

d

dx

�

�

�

�

x=t

⇢⇤x!t +
d

dy

�

�

�

�

y=t

⇢⇤t!y

= ⇢⇤x£X
x

!t

�

�

x=t
+ ⇢⇤t

d!y

dy

�

�

�

�

y=t

= ⇢⇤t

✓

£X
t

!t +
d!t

dt

◆

,

using Lemma 8.2.2 and linearity of ⇢⇤t .
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8.3 Multivector fields

This lemma is Exercise 1.5 in Homework 1 of [FM].

Lemma 8.3.1. If f 2 C1(M) and ⌫ 2 Xk(M), then [f, ⌫] = �◆df⌫.
Proof. By induction on the degree k of ⌫.
If g 2 X0(M) = C1(M), then both [f, g] and ◆dfg lie in X�1(M) = {0}. So [f, g] = �◆dfg.
If X 2 X(M), then

[f,X] = �[X, f ] = �£Xf = �hdf,Xi = �◆dfX.

Assuming that the formula holds for k-vector fields, let ⌫ 2 Xk+1(M). In local coordinates, we
have

[f, ⌫] =

2

4f,
X

i1<...<i
k+1

⌫i1,...,i
k+1

@

@xi1
^ · · · ^ @

@xi
k+1

3

5 =
X

i1<...<i
k+1



f, ⌫i1,...,i
k+1

@

@xi1
^ · · · ^ @

@xi
k+1

�

=
X

i1<...<i
k+1

[f, ⌫i1,...,i
k+1 ] ^

✓

@

@xi1
^ · · · ^ @

@xi
k+1

◆

+ ⌫i1,...,i
k+1



f,
@

@xi1
^ · · · ^ @

@xi
k+1

�

=
X

i1<...<i
k+1

⌫i1,...,i
k+1



f,
@

@xi1
^ · · · ^ @

@xi
k+1

�

(by the case k = 0)

=
X

i1<...<i
k+1

⌫i1,...,i
k+1

✓

f,
@

@xi1

�

^
✓

@

@xi2
^ · · · ^ @

@xi
k+1

◆

� @

@xi1
^


f,
@

@xi2
^ · · · ^ @

@xi
k+1

�◆

=
X

i1<...<i
k+1

⌫i1,...,i
k+1

✓

�◆df
✓

@

@xi1

◆

^
✓

@

@xi2
^ · · · ^ @

@xi
k+1

◆

+
@

@xi1
^ ◆df

✓

@

@xi2
^ · · · ^ @

@xi
k+1

◆◆

(by the case k = 1 and the induction hypothesis)

=
X

i1<...<i
k+1

⌫i1,...,i
k+1

✓

�◆df
✓

@

@xi1
^ · · · ^ @

@xi
k+1

◆◆

= �◆df

0

@

X

i1<...<i
k+1

⌫i1,...,i
k+1

@

@xi1
^ · · · ^ @

@xi
k+1

1

A = �◆df⌫.

Next lemma is Exercise 1.7 in Homework 1 of [FM].

Lemma 8.3.2. Let � : M ! N be a smooth map. Let �1 2 Xk(M), ⇠1 2 Xl(M),�2 2 Xk(N)
and ⇠2 2 Xl(N). If �1 and �2 are �-related, and ⇠1 and ⇠2 are �-related, then also [�1, ⇠1] and
[�2, ⇠2] are �-related.

Proof. Recall that to ⌫ 2 Xj(M), we associate a multilinear map

⌫ : C1(M)⇥ · · ·⇥ C1(M)! C1(M) : (f1, . . . , fj) 7! ⌫(df1, . . . , dfj).

We have

�1(f1 � �, . . . , fk � �)(x) = �1x
�

dx(f1 � �), . . . , dx(fk � �)
�

= �1x
�

d�(x)f1 � dx�, . . . , d�(x)fk � dx�
�

=
⇥

(dx�)�
1
x

⇤

(d�(x)f1, . . . , d�(x)fk),
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whereas
⇣

�2(f1, . . . , fk) � �
⌘

(x) = �2(f1, . . . , fk)(�(x)) = �2�(x)(d�(x)f1, . . . , d�(x)fk).

Since by assumption, �2�(x) = (dx�)�1x, we get

�1(f1 � �, . . . , fk � �) = �2(f1, . . . , fk) � �, (8.2)

and similarly

⇠1(f1 � �, . . . , fk � �) = ⇠2(f1, . . . , fk) � �. (8.3)

Next, using Equations (8.2) and (8.3), we get1

�

�2 � ⇠2�
�(x)

�

d�(x)f1, . . . , d�(x)fk+l�1

�

=
X

�

sgn(�)�2
⇣

⇠2(f�(1), . . . , f�(k)), f�(k+1), . . . , f�(k+l�1)

⌘

(�(x))

=
X

�

sgn(�)�1
⇣

⇠2(f�(1), . . . , f�(k)) � �, f�(k+1) � �, . . . , f�(k+l�1) � �
⌘

(x)

=
X

�

sgn(�)�1
⇣

⇠1(f�(1) � �, . . . , f�(k) � �), f�(k+1) � �, . . . , f�(k+l�1) � �
⌘

(x)

=
�

�1 � ⇠1�
x
(dx(f1 � �), . . . , dx(fk+l�1 � �))

=
�

�1 � ⇠1�
x

�

d�(x)f1 � dx�, . . . , d�(x)fk+l�1 � dx�
�

=
⇥

(dx�)(�
1 � ⇠1)x

⇤

(d�(x)f1, . . . , d�(x)fk+l�1).

Hence �2 � ⇠2 and �1 � ⇠1 are �-related, and the computation of Equations (8.2) and (8.3) shows
that

�1 � ⇠1(f1 � �, . . . , fk+l�1 � �) = �2 � ⇠2(f1, . . . , fk+l�1) � �.
Similarly,

⇠1 � �1(f1 � �, . . . , fk+l�1 � �) = ⇠2 � �2(f1, . . . , fk+l�1) � �.
At last,

[�2, ⇠2]�(x)

�

d�(x)f1, . . . , d�(x)fk+l�1

�

=
�

�2 � ⇠2�
�(x)

�

d�(x)f1, . . . , d�(x)fk+l�1

�� (�1)(k�1)(l�1)
�

⇠2 � �2�
�(x)

�

d�(x)f1, . . . , d�(x)fk+l�1

�

= �2 � ⇠2(f1, . . . , fk+l�1)(�(x))� (�1)(k�1)(l�1)⇠2 � �2(f1, . . . , fk+l�1)(�(x))

= �1 � ⇠1(f1 � �, . . . , fk+l�1 � �)(x)� (�1)(k�1)(l�1)⇠1 � �1(f1 � �, . . . , fk+l�1 � �)(x)
=
�

�1 � ⇠1�
x
(dx(f1 � �), . . . , dx(fk+l�1 � �))� (�1)(k�1)(l�1)

�

⇠1 � �1�
x
(dx(f1 � �), . . . , dx(fk+l�1 � �))

=
�

�1 � ⇠1�
x

�

d�(x)f1 � dx�, . . . , d�(x)fk+l�1 � dx�
�

� (�1)(k�1)(l�1)
�

⇠1 � �1�
x

�

d�(x)f1 � dx�, . . . , d�(x)fk+l�1 � dx�
�

=
⇥

�1, ⇠1
⇤

x

�

d�(x)f1 � dx�, . . . , d�(x)fk+l�1 � dx�
�

=
�

(dx�)
⇥

�1, ⇠1
⇤

x

� �

d�(x)f1, . . . , d�(x)fk+l�1

�

,

which finishes the proof.

1Recall that for multivector fields ⇣ 2 Xk(M), ⌫ 2 Xl(M), we defined ⇣ � ⌫ in Definition 2.2.6.
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8.4 Hadamard’s Lemma

The proofs below are by [Vor].

Lemma 8.4.1 (Hadamard’s Lemma). For any smooth function f 2 C1(Rn) and any x0 2 Rn,
there is an expansion

f(x) = f(x0) +
n
X

i=1

(xi � xi0)gi(x),

where gi 2 C1(Rn) are smooth functions.2

Proof. Holding x fixed, put h(t) = f (x0 + t(x� x0)). Using the fundamental theorem of cal-
culus and the chain rule, we get

f(x)� f(x0) =

1
Z

0

h0(t)dt =

1
Z

0

n
X

i=1

@f

@xi
(x0 + t(x� x0)) (x

i � xi0)dt

=
n
X

i=1

(xi � xi0)

1
Z

0

@f

@xi
(x0 + t(x� x0)) dt.

The lemma follows by putting gi(x) :=
1
R

0

@f
@xi

(x0 + t(x� x0)) dt.

Corollary 8.4.2. For any smooth function f 2 C1(Rn) and any x0 2 Rn, there is an expansion

f(x) = f(x0) +
n
X

i=1

(xi � xi0)
@f

@xi
(x0) +

n
X

i,j=1

(xi � xi0)(x
j � xj0)gij(x),

where gij 2 C1(Rn) are smooth functions.

Proof. Hadamard’s Lemma gives that f(x) = f(x0)+
Pn

i=1(x
i�xi0)gi(x). Applying Hadamard’s

Lemma once more on the gi, we obtain

f(x) = f(x0) +
n
X

i=1

(xi � xi0)ai +
n
X

i,j=1

(xi � xi0)(x
j � xj0)gij(x),

where ai 2 R are numbers and gij 2 C1(Rn) are functions. Applying the partial derivative @
@xi

at x0 on both sides yields ai =
@f
@xi

(x0).

8.5 Adapted distance functions

This section complements Lemma 4.1.16 and justifies some of the claims made there. We show
that any vector bundle admits a smooth metric, and we explicitly construct an adapted distance
function � as mentioned in Lemma 4.1.16.

Lemma 8.5.1. Let V be a vector space with inner products g1, . . . , gn. Then a positive linear
combination of g1, . . . , gn is still an inner product on V .

2We denote the coordinates x = (x1, . . . , xn) by upper indices to avoid double lower indices.
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Proof. Choose a1, . . . , an 2 R+
0 and consider g :=

Pn
i=1 aigi. It is clear that g is bilinear

and symmetric, since the gi are. We check that g is positive-definite. Using that the gi are
positive-definite and that the ai are positive, we have

 

n
X

i=1

aigi

!

(v, v) = 0,
n
X

i=1

aigi(v, v) = 0, 8 i : aigi(v, v) = 0, 8 i : gi(v, v) = 0, v = 0.

Lemma 8.5.2. A vector bundle ⇧ : E !M has a metric.

Proof. Take an open cover {Ui} of M that gives local trivializations �i : ⇧�1(Ui) ! Ui ⇥ Rn

of E. Then the standard inner product h·, ·i on Rn induces a metric gi on the trivial bundles
⇧�1(Ui) by

gi
�

��1
i (x, v),��1

i (x,w)
�

= hv, wi.

Let { i : Ui ! [0, 1]} be a partition of unity subordinate to the cover {Ui}. Define g :=
P

i  igi.
So for e, e0 with ⇧(e) = ⇧(e0) = x, we have

g(e, e0) =
X

i

 i(x)gi(e, e
0).

This is a metric on E by Lemma 8.5.1 above.

Let (M,Z) be a b-manifold. We now construct an adapted distance function � as mentioned
in Lemma 4.1.16. Fix a tubular neighborhood E ⇢ NZ of Z in the normal bundle, and let
p : E ! Z be the projection. By the above, we can take a metric g on E, and we have
correspondingly a continuous distance function

k · k : E ! R+ : x 7!
p

g(x, x).

Define subsets

K := {x 2 E : kxk  1/2} = k · k�1 ([0, 1/2])

and

U := {x 2 E : kxk < 1} = k · k�1 ([0, 1)) .

Then K is closed and U is open in E. Recall the smooth Urysohn lemma [Muk, Lemma 2.1.17]:

Lemma 8.5.3 (Smooth Urysohn Lemma). If K ⇢ U ⇢ E, where K is closed and U is open,
then there is a smooth function f : E ! R such that 0  f  1, f |K ⌘ 1 and supp(f) ⇢ U .

Gluing such f with the zero function, we obtain f : M ! R such that f |K ⌘ 1 and
supp(f) ⇢ U . We now define � : M ! R by � = fk · k + (1 � f). Then it is clear that
�(x) = kxk for x 2 E with kxk  1/2, and � ⌘ 1 on M \ {x 2 E : kxk < 1}. Restricting � to
M \ Z gives a function as required in Lemma 4.1.16. We call this a distance function adapted
to E.
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8.6 A Poisson version of Cartan’s magic formula

We present a proof of the following lemma, which we used in Theorem 4.3.8. It is stated without
proof in [MO].

Lemma 8.6.1. Let ⇧ 2 �(^2TM) be a Poisson bivector on M , and � 2 ⌦1(M) a closed
one-form. For a multivector field ⇠ 2 Xk(M), we have

◆�(d⇧(⇠)) + d⇧(◆�(⇠)) = £⇧](�)⇠. (8.4)

Proof. We check that (8.4) holds in local coordinates, and we proceed by induction on the
degree of the multivector field. First consider f 2 X0(M) = C1(M). We write � =

P

i gidxi
and

⇧ =
X

i<j

⇧i,j
@

@xi
^ @

@xj
.

Then

⇧](�) = ◆�

0

@

X

i<j

⇧i,j
@

@xi
^ @

@xj

1

A =
X

i<j

⇧i,j◆�

✓

@

@xi
^ @

@xj

◆

=
X

i<j

⇧i,j

✓

gi
@

@xj
� gj

@

@xi

◆

=
X

i<j

⇧i,jgi
@

@xj
�
X

j<i

⇧j,igi
@

@xj
=
X

i<j

⇧i,jgi
@

@xj
+
X

j<i

⇧i,jgi
@

@xj
=
X

i,j

⇧i,jgi
@

@xj
.

Hence

£⇧](�)f = df(⇧](�)) =
X

i,j

⇧i,jgi
@f

@xj
.

Now d⇧(◆�(f)) = d⇧(0) = 0 and

◆�(d⇧(f)) = ◆� ([⇧, f ]) = ◆� (�◆df⇧) = �◆�

0

@

X

i<j

⇧i,j

✓

@f

@xi

@

@xj
� @f

@xj

@

@xi

◆

1

A

=
X

i<j

⇧i,j
@f

@xj
gi �

X

i<j

⇧i,j
@f

@xi
gj =

X

i<j

⇧i,jgi
@f

@xj
�
X

j<i

⇧j,igi
@f

@xj

=
X

i<j

⇧i,jgi
@f

@xj
+
X

j<i

⇧i,jgi
@f

@xj
=
X

i,j

⇧i,jgi
@f

@xj
.

So (8.4) holds on functions. Now let X =
P

i fi
@
@x

i

2 X1(M) and ⇧, � given in coordinates as
before. By the above, we know that

⇧](�) =
X

i,j

⇧i,jgi
@

@xj
=
X

j

 

X

i

⇧i,jgi

!

@

@xj
.

Then

£⇧](�)(X) =

2

4

X

j

 

X

i

⇧i,jgi

!

@

@xj
,
X

k

fk
@

@xk

3

5

=
X

j,k

" 

X

i

⇧i,jgi
@fk
@xj

!

@

@xk
� fj

@(
P

i⇧i,kgi)

@xj

@

@xk

#
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=
X

i,j,k

⇧i,jgi
@fk
@xj

@

@xk
�
X

j,k

fj
X

i

✓

@⇧i,k

@xj
gi +⇧i,k

@gi
@xj

◆

@

@xk

=
X

i,j,k

⇧i,jgi
@fk
@xj

@

@xk
�
X

i,j,k

fj
@⇧i,k

@xj
gi

@

@xk
�
X

i,j,k

fj⇧i,k
@gi
@xj

@

@xk
.

On the other hand, since ◆�(X) =
P

k fkgk, we get

d⇧(◆�(X)) =

"

⇧,
X

k

fkgk

#

= �◆d(P
k

f
k

g
k

)⇧

= �
X

i<j

⇧i,j

✓

@ (
P

k fkgk)

@xi

@

@xj
� @ (

P

k fkgk)

@xj

@

@xi

◆

= �
X

i<j

⇧i,j

X

k

✓

@fk
@xi

gk + fk
@gk
@xi

◆

@

@xj
+
X

i<j

⇧i,j

X

k

✓

@fk
@xj

gk + fk
@gk
@xj

◆

@

@xi

=
X

i<j

X

k

⇧i,j
@fk
@xj

gk
@

@xi
+
X

i<j

X

k

⇧i,jfk
@gk
@xj

@

@xi

�
X

i<j

X

k

⇧i,j
@fk
@xi

gk
@

@xj
�
X

i<j

X

k

⇧i,jfk
@gk
@xi

@

@xj

=
X

i,j,k

⇧i,j
@fk
@xj

gk
@

@xi
+
X

i,j,k

⇧i,jfk
@gk
@xj

@

@xi
.

Next, we have

d⇧(X) =

"

⇧,
X

k

fk
@

@xk

#

= �
2

4

X

k

fk
@

@xk
,
X

i<j

⇧i,j
@

@xi
^ @

@xj

3

5

= �£P
k

f
k

@

@x

k

0

@

X

i<j

⇧i,j
@

@xi
^ @

@xj

1

A

= �
X

i<j

"

✓

£P
k

f
k

@

@x

k

⇧i,j

◆

@

@xi
^ @

@xj
+⇧i,j

✓

£P
k

f
k

@

@x

k

@

@xi

◆

^ @

@xj

+⇧i,j
@

@xi
^
✓

£P
k

f
k

@

@x

k

@

@xj

◆

#

= �
X

i<j

X

k

fk
@⇧i,j

@xk

@

@xi
^ @

@xj
+
X

i<j

⇧i,j

 

£
@

@x

i

 

X

k

fk
@

@xk

!!

^ @

@xj

+
X

i<j

⇧i,j
@

@xi
^
 

£
@

@x

j

 

X

k

fk
@

@xk

!!

= �
X

i<j

X

k

fk
@⇧i,j

@xk

@

@xi
^ @

@xj
+
X

i<j

⇧i,j

X

k

@fk
@xi

@

@xk
^ @

@xj

+
X

i<j

⇧i,j
@

@xi
^
 

X

k

@fk
@xj

@

@xk

!

= �
X

i<j

X

k

fk
@⇧i,j

@xk

@

@xi
^ @

@xj
+
X

i<j

X

k

⇧i,j
@fk
@xi

@

@xk
^ @

@xj
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+
X

i<j

X

k

⇧i,j
@fk
@xj

@

@xi
^ @

@xk
.

Re-indexing, we have

X

i<j

X

k

⇧i,j
@fk
@xj

@

@xi
^ @

@xk
=
X

j<i

X

k

⇧j,i
@fk
@xi

@

@xj
^ @

@xk
=
X

j<i

X

k

⇧i,j
@fk
@xi

@

@xk
^ @

@xj
,

so that

d⇧(X) = �
X

i<j

X

k

fk
@⇧i,j

@xk

@

@xi
^ @

@xj
+
X

i,j,k

⇧i,j
@fk
@xi

@

@xk
^ @

@xj
.

Hence

◆�(d⇧(X)) = �
X

i<j

X

k

fk
@⇧i,j

@xk

✓

gi
@

@xj
� gj

@

@xi

◆

+
X

i,j,k

⇧i,j
@fk
@xi

✓

gk
@

@xj
� gj

@

@xk

◆

= �
X

i<j

X

k

fk
@⇧i,j

@xk
gi

@

@xj
+
X

i<j

X

k

fk
@⇧i,j

@xk
gj

@

@xi

+
X

i,j,k

⇧i,j
@fk
@xi

gk
@

@xj
�
X

i,j,k

⇧i,j
@fk
@xi

gj
@

@xk

=
X

i,j,k

fk
@⇧i,j

@xk
gj

@

@xi
+
X

i,j,k

⇧i,j
@fk
@xi

gk
@

@xj
�
X

i,j,k

⇧i,j
@fk
@xi

gj
@

@xk
.

So

◆�(d⇧(X)) + d⇧(◆�(X)) =
X

i,j,k

⇧i,j
@fk
@xj

gk
@

@xi
+
X

i,j,k

⇧i,jfk
@gk
@xj

@

@xi
+
X

i,j,k

fk
@⇧i,j

@xk
gj

@

@xi

+
X

i,j,k

⇧i,j
@fk
@xi

gk
@

@xj
�
X

i,j,k

⇧i,j
@fk
@xi

gj
@

@xk

=
X

i,j,k

⇧i,jfk
@gk
@xj

@

@xi
+
X

i,j,k

fk
@⇧i,j

@xk
gj

@

@xi
�
X

i,j,k

⇧i,j
@fk
@xi

gj
@

@xk
.

We now inspect

£⇧](�)(X) =
X

i,j,k

⇧i,jgi
@fk
@xj

@

@xk
�
X

i,j,k

fj
@⇧i,k

@xj
gi

@

@xk
�
X

i,j,k

fj⇧i,k
@gi
@xj

@

@xk
.

Re-indexing gives

X

i,j,k

fk
@⇧i,j

@xk
gj

@

@xi
=
X

i,j,k

fi
@⇧k,j

@xi
gj

@

@xk
=
X

i,j,k

fj
@⇧k,i

@xj
gi

@

@xk
= �

X

i,j,k

fj
@⇧i,k

@xj
gi

@

@xk

and

�
X

i,j,k

⇧i,j
@fk
@xi

gj
@

@xk
= �

X

i,j,k

⇧j,igi
@fk
@xj

@

@xk
=
X

i,j,k

⇧i,jgi
@fk
@xj

@

@xk
.

Since � is closed, we have

0 = d� = d

 

X

i

gidxi

!

=
X

i

dgi ^ dxi =
X

i

X

j

@gi
@xj

dxj ^ dxi
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=
X

i<j

@gi
@xj

dxj ^ dxi +
X

j<i

@gi
@xj

dxj ^ dxi

=
X

j<i

@gj
@xi

dxi ^ dxj +
X

j<i

@gi
@xj

dxj ^ dxi

=
X

j<i

✓

@gi
@xj
� @gj
@xi

◆

dxj ^ dxi.

Hence
@gi
@xj

=
@gj
@xi

for all i, j.

This then implies

X

i,j,k

⇧i,jfk
@gk
@xj

@

@xi
=
X

i,j,k

⇧k,jfi
@gi
@xj

@

@xk
=
X

i,j,k

⇧k,ifj
@gj
@xi

@

@xk

= �
X

i,j,k

⇧i,kfj
@gj
@xi

@

@xk
= �

X

i,j,k

⇧i,kfj
@gi
@xj

@

@xk

So we conclude that
£⇧](�)(X) = ◆�(d⇧(X)) + d⇧(◆�(X)).

Now assume (8.4) holds for (k � 1)-vector fields and let ⇠ 2 Xk(M). Since both sides of (8.4)
are R-linear, we may assume that

⇠ = f
@

@x1
^ @

@x2
^ · · · ^ @

@xk
.

We write this as

⇠ =
@

@x1
^ ⇠1 with ⇠1 = f

@

@x2
^ · · · ^ @

@xk
2 Xk�1(M).

Then

d⇧(◆�(⇠)) + ◆�(d⇧(⇠)) = d⇧

✓

◆�

✓

@

@x1
^ ⇠1

◆◆

+ ◆�

✓

d⇧

✓

@

@x1
^ ⇠1

◆◆

= d⇧

✓

◆�

✓

@

@x1

◆

⇠1 � @

@x1
^ ◆�(⇠1)

◆

+ ◆�

✓

d⇧

✓

@

@x1

◆

^ ⇠1 � @

@x1
^ d⇧(⇠1)

◆

= d⇧

✓

◆�

✓

@

@x1

◆◆

^ ⇠1 + ◆�

✓

@

@x1

◆

d⇧(⇠1)� d⇧

✓

@

@x1

◆

^ ◆�(⇠1)

+
@

@x1
^ d⇧(◆�(⇠1)) + ◆�

✓

d⇧

✓

@

@x1

◆◆

^ ⇠1 + d⇧

✓

@

@x1

◆

^ ◆�(⇠1)

� ◆�
✓

@

@x1

◆

d⇧(⇠1) +
@

@x1
^ ◆� (d⇧(⇠1))

=

"

d⇧

✓

◆�

✓

@

@x1

◆◆

+ ◆�

✓

d⇧

✓

@

@x1

◆◆

#

^ ⇠1

+
@

@x1
^ [d⇧(◆�(⇠1)) + ◆� (d⇧(⇠1))]

=

✓

£⇧](�)
@

@x1

◆

^ ⇠1 + @

@x1
^
⇣

£⇧](�)⇠1
⌘
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= £⇧](�)

✓

@

@x1
^ ⇠1

◆

= £⇧](�)⇠.

8.7 On modular vector fields

In Section 6.2, we used the following result. Its proof goes after [LPV, Proposition 4.14].

Theorem 8.7.1. Let M2n+1 be an orientable manifold with a corank-one Poisson structure ⇧.
Then the modular vector field X⌦

⇧ is tangent to the symplectic leaves of M , for any choice of
volume form ⌦.

Proof. Choose p 2 M and let (U, q1, . . . , qn, p1, . . . , pn, z) be splitting coordinates around p, so
that

⇧|U =
n
X

i=1

@

@qi
^ @

@pi
. (8.5)

We consider the volume form ⇤ on U , defined by

⇤ := dq1 ^ dp1 ^ · · · ^ dqn ^ dpn ^ dz,

and for each k 2 {1, . . . , n} we denote

�k :=

2

4

^

i 6=k

(dqi ^ dpi)

3

5 ^ dz.

Then for k 2 {1, . . . , n} and for f 2 C1(M) we have:

£X
f

(dqk ^ dpk) = £X
f

(dqk) ^ dpk + dqk ^£X
f

(dpk)

= d
�

£X
f

qk
� ^ dpk + dqk ^ d

�

£X
f

pk
�

= d (Xf (qk)) ^ dpk + dqk ^ d (Xf (pk))

= �d
✓

@f

@pk

◆

^ dpk + dqk ^ d

✓

@f

@qk

◆

.

Here we used Lemma 2.7.4 to find that

Xf (qk) = � @f

@pk
and Xf (pk) =

@f

@qk
.

Therefore, for all k 2 {1, . . . , n}, we find that �k ^£X
f

(dqk ^ dpk) equals

�k ^
✓

dqk ^ d

✓

@f

@qk

◆

+ dpk ^ d

✓

@f

@pk

◆◆

= dq1 ^ dp1 ^ · · · ^ dqk�1 ^ dpk�1 ^ dq+1 ^ dpk+1 ^ · · · ^ dqn ^ dpn ^ dz^
"

dqk ^
0

@

n
X

i=1

@2f

@qi@qk
dqi +

n
X

j=1

@2f

@pj@qk
dpj +

@2f

@z@qk
dz

1

A

+ dpk ^
0

@

n
X

i=1

@2f

@qi@pk
dqi +

n
X

j=1

@2f

@pj@pk
dpj +

@2f

@z@pk
dz

1

A

#
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= dq1 ^ dp1 ^ · · · ^ dqk�1 ^ dpk�1 ^ dqk+1 ^ dpk+1 ^ · · · ^ dqn ^ dpn ^ dz ^ dqk ^ @2f

@pk@qk
dpk

+ dq1 ^ dp1 ^ · · · ^ dqk�1 ^ dpk�1 ^ dqk+1 ^ dpk+1 ^ · · · ^ dqn ^ dpn ^ dz ^ dpk ^ @2f

@qk@pk
dqk

= 0.

It then follows that

£X
f

⇤ = £X
f

(dq1 ^ dp1 ^ · · · ^ dqn ^ dpn ^ dz)

=
n
X

k=1

£X
f

(dqk ^ dpk) ^ �k + dq1 ^ dp1 ^ · · · ^ dqk ^ dpk ^£X
f

(dz)

= dq1 ^ dp1 ^ · · · ^ dqk ^ dpk ^£X
f

(dz)

= 0,

using Lemma 2.7.4 and (8.5) to see that £X
f

(dz) = 0. It follows that for the volume form ⇤,
the modular vector field is zero on U . Hence for an arbitrary volume form on U , the modular
vector field is Hamiltonian on U , in particular tangent to the symplectic leaves.
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