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Preface

Symplectic geometry arose as the mathematical framework to describe classical mechanics.
An extension of symplectic geometry is provided by Poisson geometry, and indeed symplectic
manifolds are exactly the non-degenerate Poisson manifolds. Generic Poisson manifolds are
singular objects by nature, and this makes their geometry highly nontrivial and rather wild. It
is therefore desirable to consider Poisson manifolds with well-controlled singularities as more
tractable working examples.

In this thesis, we consider such a class of Poisson manifolds, that in (part of) the literature
is referred to as “log-symplectic manifolds”. They form a convenient intermediate level between
the symplectic world and the generic Poisson world. A log-symplectic structure degenerates
in a mild fashion along a hypersurface, called its singular locus, but it is non-degenerate (i.e.
symplectic) elsewhere. So these structures do not stray too far from being symplectic, and
their behaviour is indeed analogous to that of symplectic structures in many respects. Their
geometry is nontrivial but accessible, and as such log-symplectic structures have become a topic
of intense research during the past 5-6 years.

Broadly speaking, the main question we address in this thesis is the following: “What does
a log-symplectic structure look like near its singular locus?”. Of particular interest to us are
normal form theorems that give model answers to this question. The general theory on log-
symplectic structures that we present should be considered as background material and as a
necessary tool to build towards theorems that answer our core question.

I thank my supervisor, prof. Marco Zambon, for his help and guidance and for providing
a comfortable working climate. I also greatly benefited from the Poisson Geometry Learning
Seminar, organized by Marco Zambon and Ori Yudilevich during the past academic year. It
enabled me to learn from scratch the basics of Poisson geometry in a sensible way.
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Summary

Log-symplectic manifolds, which are the objects under consideration in this thesis, form a
natural generalization of symplectic manifolds that arises in Poisson geometry. We start by
recalling the basics of symplectic geometry in Chapter 1, with emphasis on the Darboux-Moser
theorems. In Chapter 2, we give an introduction to Poisson geometry. Since the author was
not familiar with Poisson geometry prior to writing this thesis, the exposition in Chapter 2 is
rather extensive and detailed.

Having established the needed preliminaries, we introduce log-symplectic structures in Chap-
ter 3. A Poisson bivector II on a manifold M?" is called log-symplectic if the top wedge power
AT is transverse to the zero section of the line bundle A2*T'M. The zero set Z = (A™I)~" (0)
where the bivector Il degenerates turns out to be a smooth hypersurface, which we call the
singular locus of II. The first main statement of the thesis is Theorem 3.2.2, which appears in
[GMP2]. It gives the local model for a log-symplectic structure IT around a point in its singular
locus Z, namely

0 0 "9 0
M=y — A 2
ylam " o +§ Ox; " dyi’

where Z is locally defined by y; = 0. As a consequence of this normal form, we obtain that the
singular locus Z is a Poisson submanifold, with an induced corank-one Poisson structure.

Log-symplectic structures are described conveniently in the language of b-geometry. This
formalism addresses b-manifolds, which are pairs (M, Z) consisting of a manifold M and a
distinguished hypersurface Z C M. Following [GMP2] and [MO], Chapter 4 introduces the
basic concepts regarding b-geometry. We fill in some details and proofs that are not given in the
literature. The key result is Theorem 4.2.10, which establishes that log-symplectic structures
are in fact the symplectic structures of the b-category. This point of view allows us to use
symplectic techniques in the study of log-symplectic manifolds. Of particular importance is
the Moser Theorem 4.2.7. We also obtain cohomological obstructions to the existence of a
log-symplectic structure, similar to those in symplectic geometry.

Chapter 5 describes log-symplectic structures semilocally, in a neighborhood of the singular
locus. As such, it is the most important chapter. The second main statement of this thesis is
Theorem 5.2.1, which appeared in [BOT]. It gives a normal form for orientable log-symplectic
structures (M, Z,II), valid in a tubular neighborhood U of the singular locus Z:

H|U =Xy /\t% + Iz,
where X 7 is the restriction to Z of a modular vector field on M and Il is the restriction of II to
Z <+ {t = 0}. The second half of Chapter 5 is dedicated to log-symplectic extensions of corank-
one Poisson structures. Following [GMP2], Theorem 5.3.1 determines when a given corank-one
Poisson manifold (Z,11z) arises as the singular locus of a log-symplectic structure. Next, we
ask ourselves to what extent such a log-symplectic extension is unique. We answer this question
in Subsection 5.3.2, most of which is our own work: the material in question is also addressed



in [GMP2], but some parts of the exposition given there need fixing (see Remark 5.3.12). As
such, not all statements we present in Subsection 5.3.2 are original, but most of the proofs
are. In particular, we prove the third main result of the thesis in Theorem 5.3.13, which states
that, up to an appropriate notion of equivalence, the log-symplectic extensions of a corank-one
Poisson structure (Z,I1y), defined on some tubular neighborhood of Z, are parametrized by the
cohomology classes in H 1112 (Z) of Poisson vector fields on Z that are transverse to the symplectic
leaves.

In Chapter 6, we give a description of compact corank-one Poisson manifolds endowed
with a closed one-form defining the symplectic foliation, and a closed two-form extending the
symplectic form on each leaf. Following [GMP1], we define two foliation invariants and we show
that such Poisson manifolds are in fact mapping tori, whence fibrations over the circle S*. The
results in this chapter apply in particular to the singular locus of a log-symplectic structure.

At last, in Chapter 7, we scratch the surface of some aspects of log-symplectic structures
that were not treated in detail in this thesis.

vi
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Chapter 1

Preliminary Symplectic (Geometry

Symplectic geometry is a branch in differential geometry that studies symplectic manifolds.
It arose as the mathematical framework to describe classical mechanics. Nowadays, it is an
independent field of study, significantly stimulated by interactions with mathematical physics
and topology, amongst others.

In this thesis, we study an extension of symplectic manifolds, called log-symplectic manifolds.
Their behaviour is in many respects similar to that of symplectic manifolds, and many results
about symplectic structures can be generalized to the log-symplectic setting. In this preliminary
chapter, we recall some of the main concepts in symplectic geometry. It will be interesting to
see how these relate to their log-symplectic analogs.

This chapter is based on the lectures of the course “Symplectic Geometry” taught at KU
Leuven. Most of what is written below can also be found in [Ca].

1.1 Symplectic vector spaces

Definition 1.1.1. A symplectic vector space is a pair (V,€2), where V is a real, finite dimen-
sional vector space and 2 : V x V — R is a bilinear form which is:

(i) Skew-symmetric: Q(v,w) = —Q(w,v) for all v,w € V.

(ii) Non-degenerate: Ker(Q) :={v €V : Q(v,w) =0 Vw € V} = {0}.
Remark 1.1.2. With a bilinear form 2 comes a linear map
Q:V 5V 00 Q).

Non-degeneracy of €2 is equivalent with Q being an isomorphism. Now let f = {v1,...,v,} be
a basis of V, and let 8* = {vf,...,v*} be the dual basis of V*. Then the matrix of Q with
respect to the bases 5 and 8* coincides with the matrix of 2 with respect to the basis 3. Indeed,
denoting B = [ﬁ]g*, we have

Q(v;) = Z By, jou,
k=1

which implies

Q(vi, v5) = Qv;)(vi) = B j.

Hence, to see if ) is non-degenerate, one only needs to check if its matrix is invertible.



Example 1.1.3. On R??, denote the canonical basis by {e1, fi,...,en, fn}. We define the
canonical bilinear form ¢, by the rules

Qcan(eiyej) 0
Qean(fi, f;) =0 for all i,j € {1,...,n},
Qcan(eivfj) = 62’,]’

also imposing bilinearity and skew-symmetry. Note that the matrix of Q.,, with respect to this
basis is

0 1
-1 0 0
[Qean] = . (1.1)
0 0 1

Since this matrix is invertible, it follows that (.., is non-degenerate. Hence (R2”,Qcan) is a
symplectic vector space.

Definition 1.1.4. A symplectomorphism between symplectic vector spaces (V1,Q1) and (Va, Q2)
is an isomorphism of vector spaces f : Vi — V5 such that f*Qs = Q. Here f* is the pullback,
defined as

(f*Q2) (v, w) = Qo (f(v), f(w)) for all v,w € V;.

Example 1.1.3 is prototypical:

Proposition 1.1.5. Let (V,Q) be a symplectic vector space. Then dim(V) = 2n for some
n €N, and (V,Q) is symplectomorphic to (R**, Qean).

Proof. Firstly, the standard form theorem for skew-symmetric bilinear maps (Proposition 8.1.1
in the appendix) implies that the rank of € is even. Since by assumption, rank(2) = dim(V),
we get that dim(V') = 2n for some n € N. Moreover, the standard form theorem gives a basis
{vi,w1,...,vn,w,} of V with respect to which the matrix of Q has the form (1.1). Hence, the
map

Vi — €5

f:(V,Q)—>(]R2”,Qcan):{ fori=1,...,n
w; = fi

is the desired symplectomorphism. O

1.2 Symplectic manifolds

Definition 1.2.1. A symplectic manifold is a pair (M,w) where M is a smooth manifold and
w € Q2(M) is a 2-form such that:

(i) wis closed, i.e. dw = 0.
(ii) wp : TpM x T,M — R is non-degenerate, for all p € M.

Remark 1.2.2. A two-form w on M is completely determined by its associated vector bundle
map w” : TM — T*M, that on the level of sections is given by contraction of w:

W X(M) = QY M) : X — Lxw.

Non-degeneracy of w is equivalent with W’ being a linear isomorphism in the fibers, that is, w”

being a vector bundle isomorphism.



Example 1.2.3. Consider R?" with canonical basis {e1, f1,...,¢en, fn} and induced coordinates
(q1,P1,--,qn,pn). Then w =>"7" | dg; A dp; is a symplectic form. Indeed, at any point z € M
we have a basis

{ 9 9 9| 9 }
aql z’ apl ;x,'”’ 8(]71 wj apn xT
of T,R?", and under the isomorphism
aa. = €
T,R*™ — R?" . gl @
opi |, = fi

w, corresponds with Qcan. As Qcan is non-degenerate, so is w;. Closedness of w is clear.

The Darboux Theorem, which will be proved later, says that Example 1.2.3 is the local
model for all symplectic manifolds.

Example 1.2.4. Let M be an orientable surface. Then any volume form w on M is a symplectic
form. Indeed, closedness is automatic since M is 2-dimensional:

(dw)p € N*T3 M = {0}.

Non-degeneracy is argued for as follows. Let p € M and choose a basis {vi,v2} of T,M. Since
wp is nonzero, we have that wy(v1,v2) # 0. Now assume that v € T, M is such that w,(v,w) =0
for all w € T, M. Writing v = Av1 + Aav2, we get in particular

0 = wp(v,v1) = —Aawp(v1,v2)
0 = wp(v,v2) = Mwp(v1,v2)

As wp(v1,v2) # 0, this implies that A\ = Ay = 0, hence v = 0.

Example 1.2.5. If ) is any manifold, then its cotangent bundle T*(@ is symplectic in a canon-
ical way. Denote by 7 : T%Q — @Q : f € T;Q — z the bundle projection. The tautological
one-form 6 € Q1 (T*Q) is defined by

e (v) = (€, ) for { € T7 )@ and v € T(T7Q),

where (-,-) is the pairing between Ty )@ and T;(g)Q. We now coordinatize T*(Q as follows.
Choosing local coordinates (U, g1, ..., q,) on @ defines a local frame {dqi,...,dg,} of sections
for T*Q. For all z € U, we get a basis {dq1,...,dzq,} of T Q and the coordinates it induces
on T}Q will be called (p1,...,p,). We thus obtain coordinates (7*q1,..., 7 qn,P1,...,Pn) ON
T*Q|;;- We keep writing ¢; instead of 7*¢;. In these coordinates, we have

0= Z pidg;.
=1

Indeed, since 7 : T*Q — @ : (¢,p) — g, we have
a((]17 s 7qn)

—— — I O 3
’ a(Qla“')Qﬂaplw"apn) [ e | nxn]

which gives

9(q,p) (; aia—qi + bi8pi> = <;Pidqz',7r* (; ai@Tﬁ + bi@pi> >

3



n n a
= <;pz‘dqz‘,;aiaqi>
= Zpiai
i—1
= <;pid%‘> (; ai@ + biapi) .

We now define w := —df. It is an exact, hence closed 2-form. And w is non-degenerate: in
coordinates it is given by

w=—d (Zpiqu’> = Z dg; N dp;,
i=1 i=1

and this form is non-degenerate by the same argument as in Example 1.2.3.

Definition 1.2.6. A symplectomorphism between symplectic manifolds (M7, w;) and (Ma,ws)
is a diffeomorphism f : M7 — M- that satisfies f*ws = wy.

Not all manifolds are symplectic. We now present some obstructions to the existence of a
symplectic structure.

Proposition 1.2.7. Let (M,w) be a symplectic manifold. Then dim(M) is even and M is
orientable.

Proof. We have for all p € M that (T, M,w,) is a symplectic vector space. By Proposition 1.1.5,
we get that dim(M) = dim(7,M) is even. Let dim(M) = 2n. As for the orientability of M, we
just have to note that w™ is a volume form on M. Indeed, w™ is nowhere vanishing by Lemma
8.1.2 in the appendix. O

The next proposition gives cohomological obstructions to the existence of a symplectic struc-
ture. Recall that for all [ € {0,...,dim(M)}, the [-th de Rham cohomology group is defined
as
_ {closed [-forms} {BeQ(M):dB =0}
~ {exact I-forms} {3 € QM) :3a € U-1(M): 3 =da}’

H'(M)

Proposition 1.2.8. Let (M?",w) be a compact symplectic manifold. Then for allk € {1,...,n},
the de Rham cohomology class [w*] € H?*(M) is nonzero.

Proof. First assume by contradiction that [w"] € H?"(M) is zero. Then w" is exact, i.e. there
exists a € Q?"~1(M) such that w" = da. Making essential use of compactness of M and Stokes’

theorem, we get

O#Vol(M)—ll/ w":l' da:l‘ a=0,
n. Jm n. Jm n: Jom

where the last equality holds since M = (). This contradiction shows that [w"] # 0. Next, if
[w*] were zero for some k € {1,...,n — 1}, then

which contradicts what we just proved. O



Example 1.2.9. For all n > 1, the sphere S?" admits a symplectic form if and only if n = 1.
Clearly, since S? is an orientable surface, it is symplectic by Example 1.2.4. Noting that

Hk(SQn) — {

we see that H?(S?") = 0 when n # 1. By Proposition 1.2.8, §2 is not symplectic for n > 1.

R ifk=0o0rk=2n

0 otherwise

1.3 Darboux-Moser theorems

In this section, we discuss some local theory of symplectic manifolds. An important result is
Moser’s trick, which is a useful tool in deciding whether symplectic structures are equivalent. It
will allow us to prove the Darboux theorem, which establishes a local normal form for symplectic
manifolds.

Definition 1.3.1. Let M be a manifold. An isotopy is a smooth family {p;}ic; of diffeomor-
phisms of M, where [ is an invertal containing 0 and pg = Id,s. Stated otherwise, an isotopy
is a smooth map p : I x M — M, such that for each ¢t € I, the map p; : M — M : z — p(t,z)
is a diffeomorphism and pg = Id ;.

Definition 1.3.2. A time-dependent vector field on M is a family {X;}.er of vector fields on
M, depending smoothly on ¢.

Remark 1.3.3. An isotopy {p¢}ter determines a unique time-dependent vector field {X;}ier
defined by

d
Xi(p) = —
tp) = _ ps(a),
where ¢ = p; *(p). That is, X; satisfies
Xiop = TPt (1.2)

Conversely, given a time-dependent vector field {X;}.cr, there exists a local isotopy p that
solves the ODE (1.2) with initial condition pg = Id. Note that in general, p is only defined on
an open subset of I x M. However, if M is compact, or more generally if the X; are compactly
supported, then the solution p is globally defined on I x M.

We briefly recall some more useful facts.

Definition 1.3.4. Let fy, f1 : M — N be smooth maps between smooth manifolds. A homo-
topy operator between fo and fi is a linear map @ : Q" (N) — Q" ~1(M) such that

fi—fo=doQ+Qod
in the diagram

QF(N) —L 5 QFFL(N)



Let {pt }1e[0,1) be an isotopy on M with corresponding time-dependent vector field { X };¢(01]-
If we define

1
Q: QF(M) = O (M) a o / Pt (ix,0)dt, (1.3)
0
then we have the homotopy formula
pla—a=dQ(a) + Q(da). (1.4)

Indeed, we compute
1 1
Qda) +dQ(e) = [ i (x,da)at +d [ pf (1x,)de
0 0

1
:/ p; (tx,da+ dux, o) dt
0

1
_/ Pfﬁxta
0
[,
o dt’t

* *
= P11 — P

= pja — a.

In the above manipulations, we used Cartan’s magic formula (Lemma 8.2.1 in the appendix)
and Lemma 8.2.2 in the appendix.

Definition 1.3.5. A smooth homotopy between maps fo, f1 : M — N is a smooth map
h:[0,1] x M — N such that h(0,-) = fo and h(1,-) = fi.

Proposition 1.3.6. Let fy, f1 : M — N be homotopic maps. Then there exists a homotopy
operator (Q between them.

Proof. Let h:[0,1] x M — N be a smooth homotopy between fy and f;. Consider the manifold
W = Rx M, and let t be the coordinate on R. The vector field % on W is complete and its flow ¢
is given by ¢s(t,p) = (s+t,p). By the homotopy formula (1.4), we find Q : Q¥(W) — QF=1(W)
such that ¢7 — ¢§ =do @ + Q od. On the other hand, denoting i : M — R x M : p+— (0,p),
we have

fo=h(0,-) = hoi
fi=h(l,-)=hog¢ro1

Hence,

fi—fo=i"0ogioh® —i"oh® =i"0(¢] —¢p)oh" =i"o(doQ+Qod)oh”
:do(i*oQoh*)—i—(i*oQOh*)Od.

The proof ends by defining Q := i* o Q o h*. O
Remark 1.3.7. It follows that for homotopic maps fg and f1, the induced maps on cohomology
[f7]: HY(N) = HM(M) : [a] = [f}a]
for i = 0,1 are equal. Indeed, for a closed form o € Q¥(N), we have

fia— fia=d(Q(a)) + Qd(a)) = d(Q(a)),

hence [f5a] = [fal.



We now state the Tubular Neighborhood Theorem, which is a useful tool when working
locally near a submanifold. It reduces analysis near the submanifold to analysis in a vector
bundle, which is often preferable as one can use linear algebra in the fibers.

Let M be a manifold, X C M a submanifold and ¢ : X — M the inclusion map. Via the
linear inclusions d.i : 1T, X — T,.M, we consider T, X as a subspace of T, M for each z € X.
The quotient spaces N, X := T, M /T, X are the fibers of the normal bundle

TM
NX := T)LX ={(z,v): z€ X, ve N X}.

Denote the zero section of NX by ip: X — NX. A neighborhood Uy of the zero section X in
N X is called convex if the intersection Uy N N, X with each fiber is convex.

Theorem 1.3.8 (Tubular Neighborhood Theorem). In the above setup, there exists a convex
neighborhood Uy of X in NX, a neighborhood U of X in M (called tubular neighborhood), and
a diffeomorphism ¢ : Uy — U such that the following diagram commutes:

NX2DUy———UCM

7
20

X

R|--

Proof. See [Ca]. O

The Tubular Neighborhood Theorem is a key ingredient of the Relative Poincaré Lemma.

Proposition 1.3.9 (Relative Poincaré Lemma). Let X C M be a submanifold and denote by
i: X < M the inclusion. Let U be a tubular neighborhood of X. If B € Q*(U) is closed and
i*B =0, then there exists n € Q*~1(U) such that

dn =P
Ny =0 forallzeX

Proof. Via the diffeomorphism ¢ : Uy C NX — U C M from the Tubular Neighborhood
Theorem, it is equivalent to work in Uy. Let j : X — Uy denote the zero section and 7 : Uy — X
the bundle projection. We define a retraction r of Uy onto X by

r:[0,1] x Uy — Uy : (t,z,v) — (z,tv),

which is well-defined by convexity of Up. Note that r; = Idy, and 9 = j o 7w are homotopic
through r. Hence by Proposition 1.3.6, we find a homotopy operator ¢, which gives

B—7*(5*B) = dQ(B) + QdB).
Since § is closed and j* = 0, we get that g = d@(ﬁ). This makes us set 7 := Q(b’) It remains

to check that 7 vanishes on X. From the construction of @ in Proposition 1.3.6 and definition
(1.3), we see that it is enough to show that

Lo (r*p)

7



is zero on the slices {s} x X for s € [0, 1]. We work in a local trivialization of Uy with coordinates
(1,...,Tp,V1,...,Un), where m is the codimension of X in M and vy, ...,v,, are coordinates
in the fibers of Uy. In these coordinates, r is given by

(X1, Ty Ve U)o (T, ooy Ty, EUT, o EU,).

This implies that

which vanishes on X < {v; = -+ = v,, = 0}. It follows that ¢ » (r*() vanishes on each slice
ot
{s} x X, which finishes the proof. O

We now address the Moser stability theorem, which is a key result in the deformation theory
of symplectic forms. It states that one cannot get new symplectic structures by deforming a
given structure within its cohomology class.

Theorem 1.3.10 (Moser). Let M be a compact manifold and {wt}te[o,l] a smooth family of
symplectic forms such that [w;] € H?(M) is independent of t. Then there exists an isotopy
p:10,1] x M — M such that pfw; = wo for all t € [0,1].

Proof. Let p : [0,1] x M — M be an isotopy with associated time dependent vector field
{Xi}teqo,1)- We have the following equivalences:

. d, .
piwr =wp Yt € [0,1] & %(ptwt) =0
. d
< Pt <£tht+ dtwt> =0

d
®£tht+%wt:0

=2 d(l,tht) + —w; = 0.

dt
In the above manipulations, we used Lemma 8.2.3 in the appendix, injectivity of the linear
maps p; and Cartan’s magic formula (Lemma 8.2.1 in the appendix) along with closedness of
the w;. Hence, the theorem asks us to find {Xt}te[o,l} such that d (tx,w) + %wt = 0.

Note that the map

7 Q2 (M) rosed = HAH(M) 1 w — [w]
is linear, which implies that

ol = 5 ) = () =7 () = | ]

Hence, the assumption [%wt} = %[wt} = 0 yields p; € QY(M) for t € [0,1] such that du; = %wt.
With some extra work, one shows that the one-forms u; can be chosen in a smooth way [MS,
p.95]. Hence,

d
awt =0<d (Ltht + ,Ut)) =0.

Consequently, it is enough to choose X; such that

d(tx,wt) +

Lx,wt + e = 0. (1.5)
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Non-degeneracy of wy implies that the map

W) X(M) = QYM) : X — Lxwy

is an isomorphism. So we can set X; := —(w?) (1) for t € [0,1]. By compactness of M, we
can integrate X; to an isotopy p : [0, 1] x M — M, which by construction satisfies the statement
of the theorem. O

Remark 1.3.11. The Moser theorem along with Remark 1.3.7 settles the deformation theory of
symplectic manifolds. Indeed, let (M, w) be a compact symplectic manifold and let o € Q?(M)
with da = 0. For small enough ¢, we have that w; := w + ta is a curve of symplectic forms
with tangent a at ¢ = 0. The aforementioned results ensure that the existence of an isotopy
{p:} satisfying pfw; = w is equivalent with a being exact. This implies that H?(M) is the
“tangent space” to the moduli space of deformations of the symplectic structure. Heuristically,
deformations of symplectic forms are classified by the second de Rham cohomology group.

We will now prove a local version of the Moser Theorem 1.3.10. When working with isotopies,
the tube lemma from topology is often useful.

Lemma 1.3.12 (Tube Lemma). Let X and Y be topological spaces and assume that Y is
compact. If N is an open subset of X XY containing the slice {xo} XY, then N contains some
tube W XY about {xo} XY, where W is an open neighborhood of x¢ in X.

Proof. See [Mun]. O
We will use the Tube Lemma in the following form:

Lemma 1.3.13. Let M be a topological space and let {Ut}te[(),l] be a family of subsets of M,
such that Uyeo1) ({t} % Ut) is open in [0,1] x M. Then (\,ci01) Ut is open in M.

Proof. If ﬂte[o’” U; = (, there is nothing to prove. Let m € ﬂte[o’l] U;. We have that
Usepo,) ({t} x Ut) is open in [0, 1] x M, containing the slice [0,1] x {m}. By the Tube Lemma,
we find an open V' in M around m such that [0,1] x V' is contained inside (¢ 1 ({t} x Ut).
This implies that V' is an open neighborhood of m, contained in ﬂte[og} U;, which proves that

(Miefo,1) Ut is open. O

Theorem 1.3.14 (Local Moser). Let M be a manifold and X C M a submanifold. Let wy
and wy be symplectic forms on M such that wol|, = wilp for all p € X. Then there exist
tubular neighborhoods Uy, Uy of X and a diffeomorphism f : Uy — Uy such that f|x = Idx and
f*wl = W

Proof. Choose a tubular neighborhood Uy of X. The 2-form w; — wy on Uy is closed, and
(w1 —wp)p = 0 for all p € X. By the relative Poincaré lemma (Proposition 1.3.9), there exists
n € QY(Up) such that wy —wy = dn and 1, = 0 at all p € X. Now consider for 0 < ¢ < 1 the
straight line homotopy

wy 1= wo + t(wr — wo) = wo + tdn,

consisting of closed 2-forms wy on Uy. Note that w|, = wo|p is non-degenerate for all p € X.
Since non-degeneracy is an open property, there exists an open neighborhood U of X on which
wy is non-degenerate for all ¢ € [0, 1] (use the Tube Lemma). Shrinking Uy if necessary, we may
assume that {w¢},(0,1) is @ smooth family of symplectic forms on Up. As in Theorem 1.3.10, it
now suffices to solve the Moser equation (1.5). Noting that %wt = wj; —wp = dn, we have to
solve the equation

Ltht =-n
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for v;. That is, using non-degeneracy of w;, we define v; := —(w?)~!(n). Since n, = 0 for all

p € X, also v; vanishes on X. We now argue that the isotopy p that integrates v; is defined
on [0,1] x V, where V is some open neighborhood of X. Define for each t € [0, 1] the set
Vi := {p € M : pi(p) is defined}. Note that X C V; for each ¢, since v; vanishes on X.
Also, Uyepo,1) ({t} X Vi) (which is the domain of p) is open in [0,1] x M. By Lemma 1.3.13,
V.= ﬂte[o,l] V} is an open neighborhood of X, and p is defined on [0, 1] x V. Again shrinking Uy
if necessary, we assume that p : [0, 1] x Uy — M with pjw; = wq for all t € [0, 1]. Moreover, since
v|x = 0, it follows that p;|x = Idx. The proof ends by defining f := p; and Uy := p1(Up). O

We can now prove the Darboux Theorem, which states that symplectic manifolds (of equal
dimension) all look the same locally.

Theorem 1.3.15 (Darboux). Let (M?",w) be a symplectic manifold and let x € M. Then
there exists a coordinate system (U,q1,...,qn,P1,--.,Pn) centered at x such that on U:

n
w = Z dq; N dp;.
=1

Proof. The standard form for skew-symmetric bilinear maps (Proposition 8.1.1 in appendix)

gives a basis {vy, w1, ..., v,, w,} of the symplectic vector space T, M so that w, € A?T; M has
the canonical form. If (¢}, p},..., ¢, p)) are the corresponding linear coordinates on T, M, then
we have

n
Wy = qug A dp).
i=1
Fix a Riemannian metric on M and denote by ¢ the exponential map ¢ := exp,. This is a local
diffeomorphism between an open V C T, M around the origin 0, and an open U C M around
x. Moreover, ¢(0;) = exp,(0;) = = and (dp)o, = (dexp,), = Idr,p. On V, we consider the
symplectic forms wq := w; and w; := ¢*w. Note that for v,w € Ty, V = T, M:

wilo, (v, w) = Wlg(0,) ((dD)o, (v), (dP)o, (w)) = we (v, w) = wolo, (v, w),

hence woplp, = wilo,- We now apply the local Moser theorem to the submanifold {0,} C V:
this gives open neighborhoods Uy and U of 0, and a diffeomorphism f : Uy — U;j that satisfies
f(0z) =0, and f*w; = wp. Hence, (¢po f)*w = wp, which implies that on the open subset ¢(U;)
around x:

w= (o) w = (f oY) (Z da, A dp;)
=1

= d(goftog )Y Ad(piof ool

i=1
Setting new coordinates ¢; := ¢ o flog™! and p; := P} o f~lo¢~! completes the proof. [
We will need a generalization of Darboux’ theorem to the case of closed two-forms with

constant rank. The proof below uses some concepts that are introduced in the last section of
Chapter 2.

Theorem 1.3.16 (Darboux). [AM, Theorem 5.1.3] Let M be a (2n + k)-dimensional manifold
and w a closed 2-form of constant rank 2n. For each xo € M, there is a coordinate chart
(U, 1y s Ty Yly e vy Yn, W1, - - ., W) about xo such that

n
wly = Zdl‘i A dy;.
=1

10



Proof. Let us first show that Ker(w) is a completely integrable distribution. Consider the bundle
map w’ : TM — T*M : v — 1,w. By assumption, this map has constant rank 2n, which implies
that its kernel Ker(w) is a smooth rank k£ subbundle of TM ([Lee, Theorem 10.34]). That is,
Ker(w) is a smooth regular distribution. To show it is completely integrable, it is enough to
check involutivity by Frobenius’ theorem. If X,Y € I'(Ker(w)) and Z € I'(T'M ), then

0=dw(X,Y,2) = X(w(Y,Z)) - Y(w(X, 2)) + Z(w(X,Y))
—w([X,Y],2) +w([X, 2),Y) —w(]Y, Z], X)
= —w([X,Y],2).

Hence [X,Y] € I'(Ker(w)), and the distribution Ker(w) is completely integrable.
Now let zp € M. Since Ker(w) is a completely integrable k-dimensional distribution, we can

find coordinates (U, p1,...,Pn,q1s- -+ qn, W1, ..,wy) centered at zp so that {%, R agk} is a
local basis for Ker(w) on U. Denote by N the slice given by w; = --- = wp = 0, which is a
2n-dimensional submanifold with coordinates (U N N, pi,...,Pn,q1,---,qn) centered at xqg. If

i: N — M denotes the inclusion, then i*w is a closed 2-form on N of maximal rank 2n: it is a
symplectic form on N. By the Darboux Theorem 1.3.15, shrinking U if necessary, we find new
coordinates (U NN, z1,...,Zn,Y1,-..,Yn) o0 N near xy so that

n
w = Z dx; N\ dy;.
=1

Extending the x; and y; locally near xg, we get that (z1,...,2n,y1,...,Yn,w1,...,wg) is a
coordinate system for M around zg, since the Jacobian determinant of the map

(p17-.-;pTL’qla-.-7qn7w1;-.-7wk) — (xla'--,$n,y1,---,yn,w1,...,lUk)
is y |
Ti,Yj
0 I 6(pi7(Ij) ’

which is non-vanishing at zg. In these coordinates, the expression for w does not involve
dwq, ..., dwy, whence

n
w= Z dxi N\ dy;.
i=1

O]

Remark 1.3.17. A manifold M endowed with a closed two-form w of constant rank is called a
presymplectic manifold. Theorem 1.3.15 is the Darboux theorem for presymplectic manifolds.
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Chapter 2

Preliminary Poisson Geometry

An extension of symplectic geometry is provided by Poisson geometry. Poisson geometry indeed
started off as an outgrowth of symplectic geometry, though nowadays it is an extensive theory
that bears connection with many other branches in mathematics. Poisson manifolds arise nat-
urally as phase spaces of classical particles, but they are also entangled with non-commutative
geometry and integrable systems, to name a few.

This thesis addresses log-symplectic manifolds, which form a convenient class of Poisson
manifolds that can be considered as an intermediate level between the symplectic world and the
generic Poisson world.

In this preliminary chapter, the main features of Poisson geometry are presented, with
emphasis on the aspects that will be of particular interest for us. Since the author was not
familiar with Poisson geometry prior to writing this thesis, he chose to make this chapter into
a rather detailed introduction, as a personal exercise. Readers already familiar with Poisson
geometry can of course ignore this chapter, or at least the details of it. What follows is mainly
a compilation of results from [FM], [DT],[CW] and [LPV].

2.1 Almost Poisson structures (1)

Definition 2.1.1. An almost Poisson structure on a smooth manifold M is a bilinear bracket
{-,-} : C®(M) x C*°(M) — C*°(M) that satisfies

(i) Skew-symmetry: {f,g} = —{g, f};

(ii) Leibniz identity: {f,gh} = {f,g9}h + g{f, h}.

The Leibniz identity says that {f,-} is a derivation of C*°(M). By skew-symmetry, the
bracket {-,-} is a derivation in both arguments.

Example 2.1.2. Let (g, [, -]) be a finite dimensional Lie algebra. Its dual g* inherits a canonical
almost Poisson bracket. Given f € C*(g*) and £ € g*, the differential

can be viewed as a map g* — R. So it is an element of g**. Since g is finite dimensional, we

k¥ AU

have g** = g, so we can consider d¢f € g. This allows us to define an almost Poisson bracket
{,-} on C*(g*) as follows: for f,h € C*(g*) we define {f, h} € C*(g*) by

{fv h}(f) = <[d§f7 dfh]7€> for § € g*u

where (-, -) denotes the pairing between g and its dual g*. One checks that this bracket has the
desired properties.
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Almost Poisson structures are local. In order to show this, we need a lemma.

Lemma 2.1.3. Let {-,-} be an almost Poisson structure on M. Then for all f,g € C*°(M):

supp{ f, g} C supp(f) N supp(g).

Proof. We show that supp{f, g} C supp(f). If supp(f) = M, then there is nothing to prove.
So assume that supp(f) # M. Choose xy ¢ supp(f). The open sets V := M \ {z¢} and
U := M\ supp(f) cover M. Choose a partition of unity pr;, py subordinate to the cover {U, V'}.
Then we have:

{f.9}(@o) = {puf + pvf, g} (o) (since py + py = 1)
= {pvf,g9}(z0) (pu f = 0 since supp(py) C M \ supp(f))
= pv(zo){f, g} (x0) + f(x0){pv, g}(20) (Leibniz identity)
=0. (f(wo) = pv(z0) = 0)

This shows that M \ supp(f) C {x € M : {f,g}(z) = 0}. Taking complements in this inclusion,

we get {x € M : {f,g}(z) # 0} C supp(f). Taking closures then gives supp{f,g} C supp(f).
O

Corollary 2.1.4. Given an almost Poisson structure {-,-} on M, we can restrict the bracket to
an open subset U C M, obtaining an almost Poisson bracket {-, -}y such that for f,g € C*>°(M),
we have

{fi9¥lv ={flv,g9lv}v-

Proof. We show that the formula {f,g}lv = {f|v,9|lv}v vields a well-defined bracket on U.
Take o, 3 € C®°(U) such that « = f|y = f'|y and 8 = gly = ¢'|v for f, ', 9,9 € C°(M).
Note that (9 —¢')|uy =0, hence {z € M : (9—¢')(x) #0} € M\ U. Then supp(g—g¢') C M\U
by taking closures. Now Lemma 2.1.3 implies that

supp{f,g — g} C supp(f) Nsupp(g —¢') € M \ U.

Hence {f, ¢ — g}|v = 0, which implies that {f, ¢'}v = {f, g}|v. Similarly, {f",g}v = {f, g}|v.
O

Remark 2.1.5. Corollary 2.1.4 shows in particular that the value of {f, g} at some point x € M
only depends on the restriction of f and g to a neighborhood of z. Henceforth, we will no longer
distinguish between {-,-} and {-,-}y.

The description of almost Poisson structures in terms of a bracket on the algebra of smooth
functions is not always the most efficient one. There is an alternative description in terms of
so-called bivector fields. A brief excursion to multivector fields is needed.

2.2 Multivector fields

Let M be a smooth n-dimensional manifold and k a positive integer. Recall that the smooth
differential k-forms QF(M) are sections of the vector bundle A¥T*M. They can be identified
with the C°°(M)-multilinear, alternating maps

w: X(M) x - x X(M) — C=(M).
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The k-multivector fields, denoted by X¥(M), are sections of the dual bundle (A*T*M)* =
AF(T*M)* = AFT M. They can be identified with the C°°(M )-multilinear, alternating maps

v QY M) x - x QYM) — C®(M).

Let (x1,...,2,) be a system of local coordinates on M. Then w € QF(M) and v € X*(M) have
local expressions

0 0
w= Z Wiy,..ipdxiy N -~ Ndz;, and v = Z Vitoit AR

1<i1 << <n 1<t << <n
The pairing (w, V) of w and v is the function defined by
(w,v) = E Wit seoyigg Vit ey
1< << <n

One checks that this definition does not depend on the choice of coordinates.

The space of all multivector fields X®*(M) := @}_, X¥(M) is endowed with the usual oper-
ations, listed below.

Wedge product

For p € M, the exterior algebra AT, M of the vector space T),M has a wedge product A. It is
defined by

A AP T, M x AT, M — AFPT,M

1
(wAw)(en,...,aen) = 1 D sgn(0)v(o(), - o)) W( Q1) - - > o(r));
o JESk+l
where aq, ..., ag4 € TyM. It induces a wedge product of multivector fields by

A XR(M) x X5(M) — XM5(M) . (WACQ)p=1vp A, Where vy, ¢, € AT, M.

With the convention that X°(M) = C®°(M) and f Av = fv for f € C®°(M),v € X¥(M), the
wedge product turns X*(M) into a Grassmann algebra. That is,

(i) (fri+g)ANC=fri ACH+graN¢  for f,g € C®(M);
(i) vAC=(=DM¢Av  forve XF(M) and ¢ € XY(M);
(iii) (v1 Ava) Avg =11 A (v2 Asg).

We can evaluate wedge products by
(X1 A AN Xp)(an, .. ap) = det[og (X))
for Xi,..., Xy € X(M) and oy, ..., a1 € Q1 (M).

Interior product

Given a k-vectorfield v € X¥(M) and a 1-form o € Q'(M), the interior product of v by « is
LoV € XF=1(M), defined by

tav(aq, ... ap—1) = v(a,ag, ..., a5_1).
It is a degree —1 derivation of A, satisfying:

(i) talfri+gv2) = frarr + grave;
(i) ta(VAE) = (ta¥) ANE+ (=1 v A (10€) for v € XF(M);
(iil) t(fatgp)V = flav + grpv.
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Pushforward

If ®: M — N is a smooth map, we have an induced pullback map ®* : Q*(N) — Q°*(M) on
differential forms. The pushforward is the dual operation on multivector fields. One has to be
more careful though; as opposed to the pullback, the pushforward is not always defined.

For each p € M we have a linear map dp,® : Ty M — T, N and an induced linear map
dp® : NFT, M — /\kTé(p)N t0r A A = (dp®)(v1) A A (dp®) (o),

where d,® is the identity map on R = AT, M = /\OT@(p)N . Two k-vectorfields v € X¥(M) and
¢ € X¥(N) are said to be ®-related if §a(p) = (dp®)(vp) for all p € M. In general, this relation

does not define a map X*(M) — X*(IN). We can have several multivector fields on N that are
®-related to a fixed multivector field on M. For instance, consider

®d:R* = R?: (z,y) — (z,0).

Saying that Y € X(R?) is ®-related to X € X(R?) only determines Y on {(x,0) : # € R}. Tt
is also possible that there exist no multivector fields that are ®-related to a fixed multivec-
tor field. For instance, take X € X(R?) in the previous example such that (d(;1)®)(X(; 1))
and (d;0)®)(X(y,0)) are different. If @ is a diffeomorphism however, we get a well-defined
pushforward map

D, X (M) = XHN) v B,

where (®.1)g () = (dp®)(vp) for all p € M. The pushforward satisfies
(i) Pu(avy + bra) = a®,(v1) + 0P, (12) for a,b € R,
(i) @x(v A Q) = Du(v) A Du(C).
Remark 2.2.1. Multivector fields v € X¥(M) and ¢ € X¥(N) being ®-related means that

Sop) (a1, ..., ar) = (P aq, ..., ®%ay) for all ag,...,ap € Tg(p)N.
Indeed,
(dp®)(Xulp Ao A Xilp)(ea, .. an) = (dp®)(Xifp) A--- A (dp®)(Xilp)(an, ..., o)
a1 (dp®(Xilp)) .. a1 (dp®(Xklp))
o (dB(X11,)) . e (dyB(Xi)
(@*a1)(Xilp) - (P"a1)(Xklp)
(@*akj(lep) (‘I’*akj(Xk|p)

= (Xl‘p AR /\Xk]p)(fb*al, e ,(I)*Ozk).

Lie derivative

The Lie derivative of a k-vectorfield v € X*(M) along a vectorfield X € X(M) is the k-vectorfield
£xv € XF(M) defined by
d

‘£XV = @((b—t)*y t:07

where ¢ is the flow of X. Note that the pushforward in this formula is well-defined, since the
flow maps ¢_; are diffeomorphisms.
The Lie derivative is a degree 0 derivation of A. If X € X(M) and vy,v2 € X*(M) then
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(i) £x(av1 +bvy) =afxv +bLxry for a,b € R;
(i) £x(1 Ao) = (£xv1) Ava+ v A (L£x1r);
(i) £x(f) = X(f) for f € C(M) = X(M);
(iv) £xY =[X,Y] for Y € X(M).

Schouten bracket

The Schouten bracket is an operation on multivector fields that extends the Lie bracket of vector
fields. The following theorem ensures its existence and uniqueness.

Theorem 2.2.2 (Schouten bracket). There is a unique bilinear map [-,-] that turns X*~1(M)
into a Z-graded super Lie algebra, with the following properties:

(i) For fized &€ € X*(M), the bracket [€,-] is a graded derivation of degree k — 1 with respect
to the wedge product on X*(M).

(ii) For X € X(M), the bracket [ X, -] is the Lie derivative.

(iii) For & € XK(M) and ¢ € XY(M), the value of [£,(] at a point p depends only on the
restriction of & and ¢ to a neighborhood of p.

Proof. See for instance Theorem 1.1 in [Vai]. O

Remark 2.2.3. Super Lie algebra means that skew-symmetry and the Jacobi identity hold
with signs. That is:

o [v,¢] = —(=1)FDU=D[¢ 1] for v € X¥(M) and ¢ € XH(M);

o (—=1)ED=DIy, (], 7] + (=1)UDED(C 7, 0] + (1) DED 0], (] =0
for v € X¥(M), ¢ € X/(M) and T € X™(M).

Property (i) in Theorem 2.2.2 means that
g.cnml =16 AT+ (-D)E Vel 7,

where & € XF(M), ¢ € XY(M) and 7 € X™(M).
Property (ii) in Theorem 2.2.2 says that the Schouten bracket extends the Lie bracket, as was
desired. Indeed, for X,Y € X(M) we get [X,Y]schouten = £xY = [X, Y] Lic.

Remark 2.2.4. Note that the grading for the graded Lie algebra structure on multivector fields
differs from the grading for the graded algebra structure. Indeed, the Lie algebra grading is the
algebra grading shifted by —1. Consequently, we have

[ ] s XF (M) x XM — xR (.

Indeed, v € X¥(M) has degree k — 1 and ¢ € X!(M) has degree [ — 1. Hence [v,(] has degree
k —1+41—1, and therefore it is an element of X**/=1(M). In contrast with this, we have

A XR ) < xH () — xR .

The next result follows from the defining properties of the Schouten bracket. Its proof can
be found in the appendix.

Lemma 2.2.5. If f € C®°(M) and v € XK(M), then [f,v] = —iqv.

We also include an explicit definition of the Schouten bracket.
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Definition 2.2.6. Let v € X*(M) and ¢ € X'(M) be multivector fields. Their Schouten bracket
is the multivector field [v, (] € X*+!=1(M) defined by

v, (] =vo(—(—1)F VDo,

where we set

COI/(dfl,.. dfk-H l ngn 7"'7f0(k))7fa(k:+l))-"7fa(k+l—1))'
The sum is over all (k,l —1)-shuffles, that is the o € Si1;_1 satisfying (1) < 0(2) < --- < o(k)
and o(k+1) <o(k+2)<---<o(k+1—1). And we define U(fi,..., fi) := v(dfi,...,dfr).

Remark 2.2.7. It suffices to define [v, (] on exact 1-forms since they locally span Q'(M) and
multivector fields are C'°° (M )-multilinear. The explicit definition is of little use in practice; for
computations we rather use the defining properties in Theorem 2.2.2.

2.3 Almost Poisson structures (2)

We defined an almost Poisson structure on M in terms of a bilinear bracket {-,-} on C*°(M).
There is a second description, in terms of a bivector field.

Proposition 2.3.1. For a smooth manifold M, there is a 1 : 1 correspondence between almost
Poisson brackets {-,-} and bivector fields Il € X2(M), given by

{f, 9} = 1(df,dg) = (IL,df A dg).

Proof. Let {-,-} be an almost Poisson bracket on M. We first show that {f, g}(zo) only depends
on d,, f and d,,g. To do this, it suffices to show that d,, f = 0 implies {f, g}(x¢) = 0.
By Corollary 8.4.2 in the appendix, we can take a coordinate neighborhood U of xy on which'

f(a) = f(zo +Z
f(zo —i—Z:r —iL‘O

(o) + Y _ (2" — a) (27 — ) gij(x)

',j—l

- xO)gl]( )s

for functions g;; € C°°(U). Since by assumption d,, f = 0, it follows that we can locally write

f(z) = f(=zo —i—Zx —xo Z —:vo)gw f(zo —1—2041

where we defined o;(x) := 2% — x{ and B;(z) := Z;L:l(xj - :vé)gij(x). Note that o;(x) and §;(z)
vanish at xg. Using the Leibniz identity, we get

{£.9}(x0) = {xo+zal Bi(a).g } (x0)

= {f(20), 9}(x0) + Z ai(@o){Bi, 9} (wo) + Y Bixo){eu, g} (o)

i=1 i=1

!We denote the coordinates = = (x!,...,2™) by upper indices to avoid double lower indices.
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= {f(z0), 9}(x0)-

However, the Leibniz identity also implies that

{179} :{1'1ag} :{1’9}'1+1'{179}:2'{179}a

hence {1,g} = 0. By linearity, also f(zo){1,g} = {f(%0),9} = 0, from which it follows that
{f,9}(z0) = 0. Thus we can write

{f,9}(2) = ;(d [, dzg), (2.1)

for a smooth field of skew-symmetric bilinear maps I, : ToM x TM — R. Equation (2.1)
defines IT uniquely as a C°°(M)-bilinear, skew-symmetric map II : Q' (M) x QY (M) — C>(M).
Conversely, given a bivector field I € X?(M), we define a bracket {:,-} on C*°(M) in the
prescribed way:

{f,9} = 11(df, dg).

It is straightforward to check that this bracket satisfies the necessary properties of Definition
2.1.1. O

Almost Poisson structures are however not exactly the objects of interest for us. Poisson
structures are.

2.4 Poisson structures

Definition 2.4.1. An almost Poisson structure {-,-} on a manifold M is called a Poisson
structure if it satisfies the Jacobi identity, that is

{{fvg}ah} + {{g7h}>f} + {{haf}ag} =0 for all f,g,h € COO(M)

A Poisson manifold (M, {-,-}) is a manifold M equipped with a Poisson structure {-,-}. The
corresponding bivector field II is called a Poisson tensor.

By Proposition 2.3.1, we know that with a bivector IT comes an almost Poisson bracket {-, -}.
In general, this bracket does not satisfy the Jacobi identity (i.e. it is not Poisson). We will now
see which property characterizes bivectors Il that do correspond to Poisson brackets.

Definition 2.4.2. Given an almost Poisson structure {-,-} on M, we define the jacobiator .J
on C*(M) by
J(f,9,h) = {{f. g}, b} +{{g,h}, F +{{h, 1, 9}

One can check that the jacobiator is alternating and a derivation in each of its arguments.
By an argument identical to the proof of Proposition 2.3.1, it follows that the jacobiator J
corresponds to a trivector field J € X3(M) such that J(df,dg,dh) = J(f,g,h).

Proposition 2.4.3. Let (M,{-,-}) be almost Poisson. Then [II,II] = 23J.

Proof. By definition of the Schouten bracket:

ST dfs, df, dfs) = (110 TO) (s, )
= Z SQn(J)ﬁ(ﬁ(fa(l)fa(Q))v f0(3))7
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where the sum is over all o € S5 with o(1) < ¢(2). That is, we sum over the permutations
(1)(2)(3), (1)(23) and (123). Their signs are +1, —1, +1 respectively. Hence

H(II(f1, f2), f3) + I(II(f2, f3), f1) — I(IL(f1, f3), f2)
= IL(IL(df1, df2), f3) + IL(TX(df2, df3), f1) — IL(XL(df1, df3), f2)
=TL({f1, fo}, f3) + O({fo, f3}, f1) — IL({ f1, f3}, f2)
= I1(d{f1, 2}, dfs) + T1(d{fo, s}, dfr) — TL(d{ 1, fs}, df2)

£ LTIy, s dfs) =

= {{f1, Lo}, f3} + {{f2, 3}, [} + {{f3, f1}, f2} (2.2)
= J(f1, f2, f3)
= J(df1, df2, df3).
Hence [II, 1] = 23. 0

It follows that the Jacobi identity for the bracket {-,-} is equivalent with the equation
[IL, 1] = 0 for the corresponding bivector field II.

Corollary 2.4.4. Let (M,{-,-}) be a Poisson manifold. Then the associated bivector field
I € X2(M) satisfies [II,1I] = 0. Conversely, every bivector field II € X2(M) satisfying this
relation defines a Poisson bracket by {f, g} := I(df,dg).

Remark 2.4.5. By Remark 2.2.3, the Schouten bracket of bivector fields is symmetric. Hence,
the condition [II,II] = 0 is not vacuous.

Example 2.4.6. We reconsider Example 2.1.2. For a finite dimensional Lie algebra (g, [-,-]),
we established that

{f, h3(€) = ([def, deh], €)

defines an almost Poisson bracket {-,-} on g*. In fact, one can check that this bracket satisfies
the Jacobi identity. Therefore it is a Poisson structure on g*, called the Lie-Poisson bracket.

Example 2.4.7. Let M be a 2-dimensional manifold. Then every bivector II is a Poisson
tensor. Indeed, [II,1I] € X3(M) hence necessarily [II, II] = 0.

Example 2.4.8. Quite trivially, any manifold M is Poisson when endowed with the zero bracket
{,-} =0.

We finish this section with a few words about coordinate representations of Poisson struc-
tures.

Definition 2.4.9. Let (U, z1,...,x,) be local coordinates on a Poisson manifold (M, {-,-})
with Poisson bivector II. Structure functions II; ; € C°°(U) are defined by

Il j () = {@i, ; }(z) = Ha(dowi, day).
Note that II; ; = —II;; by skew-symmetry.

In the local basis {B%i/\ %ﬂ, 11 <i<j<n}of X2(M), we write IT = dicih ,Jai Ny 8 - for
locally defined functions h; j. Evaluating both sides in (dz;, dz;) gives h; j = I1(dz;, dx]) H”-.

Hence o o 1 o 0
II = 1I; — 1I; —_—
; b Bacl 830] 2 EJ: wi 8:6Z Ga:j
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Equivalently, we have a local expression for the bracket:

of of ZH of of

{fyg} = H(df7 dg) = dx] 8561 61‘] 1,J ax 8IE]

——dx;, dx] ZH dx;,
J

%,J

Example 2.4.10. One can derive a coordinate expression for the Lie-Poisson bracket on g* as
follows. Let {v1,...,v,} be a basis of g and let p1,...,pu, be the coordinate functions on g*
corresponding to the dual basis. Introduce structure constants c;j;, satisfying

Uu Uj § CijkVk-

Then one can check that

n of dg
= 2-
{fa g} i;k X Cijk Mk — 6 au] ( 3)

2.5 Symplectic versus Poisson structures

Symplectic manifolds are the nicest examples of Poisson manifolds. The aim of this section is
showing that symplectic structures correspond to non-degenerate Poisson structures.

Definition 2.5.1. Let IT € X2(M) be a bivector field. It determines a sharp map
I : QY (M) — X(M) : a — 1,11

That is, (3,T*(a)) = (a A B,11) for all a, 3 € Q'(M). The map IT* is C°°(M)-linear, whence
induced by a morphism of vector bundles IT* : T*M — T M.

Definition 2.5.2. The rank of a bivector II € X¥?(M) at a point = € M is the rank of the linear
map 114 : T*M — T, M.

Remark 2.5.3. Let (x1,...,2,) be local coordinates around x € M. With respect to the bases
{dzx1,...,dyzy} and {%h’ e Bac |« } of T M resp. T, M, the matrix of IT% is equal to the
transpose of the matrix of the bilinear map II, : T;M x T;M — R. That is,

(] = [ (dys, dozy)] = [Tij(@)]; -

This is true since

1 9 9\ 1 0 9
# _ - .. = — i ik~ — Ojk5
17]

2y}

0 0
72 ’Ja 2ZHi7k%:;Hk7j(%j.

)

Remark 2.5.4. By skew-symmetry, the rank of II at any point x € M is an even number.
This is a direct consequence of the Standard Form Theorem for skew-symmetric bilinear maps
(Proposition 8.1.1 in the appendix).

Definition 2.5.5. A bivector field IT € X2(M) is called regular if its rank is the same at all
points x € M.
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Definition 2.5.6. A bivector field II € X?(M) is called non-degenerate at x € M if the map
ch : TXM — T, M is an isomorphism. A bivector field is non-degenerate if it is non-degenerate
at all 2 € M. In this case, the map II* : T*M — TM is a vector bundle isomorphism.

Remark 2.5.7. Assume that dim(M) = 2n. Non-degeneracy of II € X?(M) is easily checked
as follows: II, is non-degenerate if and only if A"II, # 0. For a proof of this fact, see Lemma
8.1.2 in the appendix.

The key result in light of the aim of this section, is the following.

Proposition 2.5.8. There is a 1 : 1 correspondence between non-degenerate bivector fields
II € X2(M) and non-degenerate 2-forms w € Q?(M), given by

W= —(I) 7! e IIF = — ()
Under this correspondence, we have
[IL T} (ev, B,7) = 2dw (IF¥(a), IFF(8), (7)) for a, 8,7 € Q' (M). (2.4)

Proof. The first statement is clear. It is enough to check that equation (2.4) holds on exact
1-forms since these locally span Q'(M) and both sides of (2.4) are C°°(M)-trilinear.
By Equation (2.2) in Proposition 2.4.3, we have

(L I0] (df1, dfa, dfs) = 2({{f1, fo}, fa} + {{fo; fo}, fr} + {{ /S5, [1}, f2}).

On the other hand, the invariant formula for the exterior derivative gives

deo (LI (), T (dfy ), T (df) = LI (o) (w (LEF (), T () ) — (o) (w0 (I2F (), TE(dF)) )
o+ TE(dfs) (o (T (), TE(df2) ) = o ([T (), T ()] T ) )
+ W([Hﬁ(dfl% 1T (dfs)], Hﬁ(dfz)) - W([Hﬁ(dfz), 1T (dfs)], Hﬁ(dfl))-

Here,

I(dfy) (1w (I (df), T (dfy)) ) = TE(dfy) (o (T (df) (1EE () )

= —II%(dfy) (df (Hli (dfs))) (since w’ = —(I%)~1)
= —TI(dfy) (TT%(df3)(f2))
= —I(df1) ({ f3, f2}) (since T*(df) = TI(dfs,) = {fs,})
= —{f1. {f3, f2}}-
Similarly,
I(dfz) (w(IF(df), T (dfy)) ) = —{fos { o, 1))
and
IE(dfs) (w (T (1), TE(df2)) ) = —{ oo {fos i}
Next,

o [T (df), T ()], T (dfy) ) =~ (T () ([T (1), T ()] )
— dfs ([nﬁ(dfl), Hﬁ(dfg)]) (since o = —(IT¥)~1)
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= [T*(dfr), T (df2)] (f3)
= IH(dfy) (IE(df2)(f3)) — TE(df2) (TE(df) ()
={fu.{f2, f3}} = {f2., {f1. f3}}.

Similarly,

oo [TP(df2), TE(df)] T (df2) ) = {1, (s, o} = (o {1 o))

and

oo ([TP(dfo), TE(df)] T (L) ) = {f2. {Fo. fi}h = {fou (o 1}

It follows that

dw (TIF(dfy), T (dfa) T (dfs)) = —{f1, {f3, fo}} + {fo. {f3, 1} } = {f3: {fo, 1 }}
—{fiAfo, £33} + {2 L1, F33 ) + LA s o3}
—{fs. {f1, fo}} — {fo. {f3, f1}} + {3, {fo, f1}}
= {{f1, fo}, f3} + {{fo, Fs}, i} + {{f3, i} fo )

Thus,
[IL,T0) (dfy, df, dfs) = 2dw (IT*(df1), TI* (df2), TT*(df3)).

We conclude:

Corollary 2.5.9. On a manifold M, there is a 1 : 1 correspondence between non-degenerate
Poisson structures and symplectic stuctures.

Proof. If TI € X%(M) is non-degenerate, then TI* : QY(M) — X(M) is an isomorphism (of
C>(M)-modules), in which case dw = 0 if and only if dw(IT*(a),II*(3),1I*(7)) = 0 for all
a, B,y € QY(M). It follows that the correspondence of Proposition 2.5.8 matches non-degenerate
bivectors II satisfying [II,II] = 0 with non-degenerate 2-forms w satisfying dw = 0. O

In local coordinates, we make the transition between the Poisson bivector II and its asso-
ciated symplectic form w as follows. Choose local frames {dz1,...,dz,} and {6%17 52 Y of

9 m
T*M resp. TM. Write IT = ) Hiaja% A % By non-degeneracy, the matrix [II] = [II; j]; ;
is invertible, and

1<j

) = 17 = (—m1) " == (A7) = o

It follows that w =}, . wj jdz; A dxj, where [w; ;]; j = — ;]!

Example 2.5.10. The canonical Poisson structure on R?” with coordinates (q1,p1, .- -, Gn, Pn)
isII=3", f% A %. It is non-degenerate, and corresponds to the canonical symplectic form

w=-—II"1=3" dg Adp.
2.6 Poisson maps

Having defined the objects of the Poisson category (namely, Poisson manifolds), we now address
the morphisms of this category.
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Definition 2.6.1. A smooth map & : (M, {-,-}n) = (N, {-,-}n) between Poisson manifolds is
called a Poisson map when

" ({f,9}n) ={®*(f), 2" (9)}nr forall f,g € C=(N).
That is, {f o ®,go @}y = {f,g}n o ® for all f,g € C®(N).

Remark 2.6.2. If (M, {, -}) is a Poisson manifold, then (C*°(M), {-,-}) is a Poisson algebra, i.e.
a commutative, associative algebra with a Lie algebra structure satisfying the Leibniz identity.
Definition 2.6.1 states that Poisson maps are those maps ® : (M, {-,-}nr) = (N, {-,-}n) whose
pullback ®* : (C*®°(N),{-,-}n) = (C>*°(M),{-, -} n) is a morphism of Poisson algebras.

We now give a characterization of Poisson maps in terms of the Poisson bivectors.

Lemma 2.6.3. Let (M, {-,-}rs) and (N, {-,-}n) be Poisson manifolds. Denote by Ily; € X2(M)
and Iy € X%2(N) the corresponding Poisson bivectors. A smooth map ® : M — N is Poisson
if and only if Iy and Iy are ®-related.

Proof. First assume that Iy and II); are ®-related. For f,g € C°°(N), we get

{fo®,go®}r(p) = (Tla)y(d ( ©),dy(g 0 ©))
= (Iar)p(da () f 0 dp®, da(p)g © dp®) (chain rule)
= (n)p(® (dé(p)f) *(do(p)9))
= (IIn)a(p) (dop) f, dop)9) (Remark 2.2.1)
= {f, 9}~ (2(p)).

This shows that {f o ®,go ®}y = {f, g}n o P, hence P is Poisson.
Conversely, assume that ® is a Poisson map. We have to show that (Ily)a ) = (dp®)(Ilar)p
for all p € M. It suffices to prove this equality on differentials of functions. We have

(dp®)(Mar)p (dop) fr dop)g) = (Mar)p (2" (da ) f), @ (do)9)) (Remark 2.2.1)
= (Tar)p (dogp) f © dp®, do(p)g © dp®P)
= (ar)p ( b(fo®),dy(go ‘?)) (chain rule)
={fo®,g0®}u(p)
={f,9}n(2(p)) (since @ is Poisson)
= (Iv)a (al<1>(p)f7 dep p) )
This shows that Il and II; are ®-related. ]

Example 2.6.4. Let (M1, {-,-}1) and (Ms,{,-}2) be Poisson manifolds. Their direct product
My x My can be equipped with the natural bracket

{f(z1,22), 921, 22)} := { fan, Gun J1(21) + { fry Gy J2(22),

where we use the notation hy, (z2) = hg,(x1) = h(x1,22) for h € C®°(M; x M), 1 € M,
and x9 € M. This is a Poisson bracket on M; x My, called the product Poisson structure.
With respect to this product Poisson structure, the projection maps M; x My — M; and
My x My — M are Poisson maps.

One last characterization of Poisson maps involves the sharp maps associated with the
Poisson bivectors. It will be useful in the next section.
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Lemma 2.6.5. Let (M,I1y;) and (N,IIy) be Poisson manifolds. A smooth map ® : M — N
is Poisson if and only if the following diagram commutes for all x € M :

(IT5)a
T*M ——— T, M

(dﬁb)g[ ldch
(Hﬁv)m)

th( )N _— T@(I)N

Proof. Tt is enough to check this assertion on differentials of functions. Let f € C*°(N). We
will show that the actions of (d,® o (Ht}w)m o (dp®)*) (de(y) f) and (Hg\,)q)(x) (de(z)f) coincide on
any function g € C*°(N) if and only if ® is Poisson. We have

[(de® o (T, )2 (da®)") (dao) )] (9) = [(da® © (T, )2) (a0 da®)] ()
= [(de® o (114)2) (d( £ 0 )| (9)
[dq){fo‘b h(@) | (9)
o(2)9(de®({f 0 @, -}y (2)))

=d
=dy(g0 @) ({fo®, }u(x))
={fo®,g0®}y(x),

whereas

(1) a0 (dagay )] (9) = {f. g} (@ ().

The claim follows. O

Remark 2.6.6. Let (M,w)s) and (N,wy) be symplectic manifolds. Then asking for a map
® : M — N to be symplectic (i.e. ®*wy = wys) is not the same as asking for ® to be Poisson.
For instance, consider

i (R27p17QI) — (R47p17q17p27q2) : (pluql) = (p17QI7070)'

Here R? and R* are endowed with their respective canonical Poisson structures {-,-}; and
{*,-}2. The corresponding symplectic forms are w; = dp; A dq; and wa = dp; A dq1 + dp2 A dqa,
respectively. Then ¢ is symplectic, but not Poisson since

{p20oi,qg2oi}y ={0,0}; =0

whereas

{p2,@2}20i=10i=1.

Remark 2.6.7. A symplectic realization of a Poisson manifold N is a Poisson map ® : M — N,
where M is a symplectic manifold. One can show that every Poisson manifold admits a surjective
submersive symplectic realization.
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2.7 Poisson vector fields

Definition 2.7.1. Let (M, {-,-}) be a Poisson manifold. For any f € C°°(M) we have a linear
map

Xp 0 C®(M) = C®(M) : h X (h) = {f,h}.

The Leibniz identity of {-,-} says that Xy is a derivation. It thus corresponds to a vector field,
called the hamiltonian vector field of the function f.

Remark 2.7.2. If IT € X2(M) is the Poisson bivector corresponding to the bracket {-,-}, then
we can write

X ={f,} = g Il = T (df).
The assignment C*°(M) — X(M) : f +— X is a morphism of Lie algebras:

Lemma 2.7.3. Let (M,{-,-}) be a Poisson manifold. Then
(X7, Xg] = X501
Proof. For h € C*°(M), we have

(X5, Xl = X(pgp) h = XpXgh = X Xph — Xz yh
= Xf{gv h} - Xg{f7 h} - {{f7g}7h}
= {fv {gah}} - {gv{fa h}} - {{fvg}vh}

= —{{f,g},h} - {{g>h}>f} - {{hvf}ag}
=0,

where we used skew-symmetry of {-,-} and the Jacobi identity. O

Hamiltonian vector fields are expressed in local coordinates as follows.

Lemma 2.7.4. Let (M, {-,-}) be a Poisson manifold with local coordinates (U, x1,...,x,). Then
forall f € C*(M):

Xily = Z{xhxj}a 6 Z{fvxj}

1,j=1

Proof. Writing

Z{%,x]}

,j=1

for the associated Poisson bivector, we get on U that

U B N A0 NN A
Xy =1gll = 5 Z {xz,JUJ} <axi 330]' axj 6%)

ij=1
of 0 1
’Z{x“%}a 37—*2{%%}3 8961
3,j=1 1,j=1
S e 22
=1 ’ 8a:iaxj’
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where the last equality is obtained by re-indexing ¢ <+ j in the second summation and using
skew-symmetry of {-,-}. Noting that

u o u d
{f,2;} = T(df,dz;) = (Z o d:L‘z,da:J> - ZH(d:Ui,d:Uj)a—i — Z{xi,xj}a—i
i=1 b=l '

finishes the proof. O
Poisson vector fields are the infinitesimal automorphisms of the Poisson structure.

Definition 2.7.5. Let (M, {-,-}) be a Poisson manifold with Poisson bivector II. A vector field
X € X(M) is a Poisson vector field if the following equivalent conditions hold:

1. £XH:0;

2. X({f.9}) ={X(f), g} +{f, X(g)} for all f,g € C*(M);
3. The flow {¢:} of X consists of local Poisson diffeomorphisms.

Proof. We have

Lx{f,9} = £x(IL,df Ndg) = (£xIL,df Ndg) + (I, £x(df Adg))  (Leibniz rule for pairing)

)=
= (£LxIL df Adg) + (I, (£xdf) A dg) + (1L, df A (£xdg))
= (£LxI,df Ndg) + (II,d£x f AN dg) + I, df Nd£xg) (d and £x commute)
= (£xIL,df Ndg) + (I1,dX (f) Adg) + (I, df AdX(g)).
Hence
X({f.9}) = (£xM)(df,dg) +{X(f), g} +{f, X(9)}

(£xID)(df,dg) = X({f,9}) —{X(f),g} —{f, X(9)}-

This proves that 1. < 2.
Next, recall the classical formula (see Lemma 8.2.3 in the appendix)

d . duoy
aptwt = Pt <"£Utwt + dt)

Here {w;} is a smooth family of differential k-forms, and {p;} is an isotopy with corresponding
time dependent vector field {v;}. In case {¢;} is the flow of the vector field X, we get

d d d
G 00ng0 00} 061) = 0" 011,059} =~ (X161 1.000) — 611,000}

(XAor S, rg)) + o7y ({dt¢tf ¢t9}+{¢tf ¢:9}>

—¢

- (X{oi f, dig}) + &7 ({¢t ¢t9}+{¢tfa¢t })

- (X{o; f, 01 9}) + 0%, ({X (@7 f) ¢t9}+{¢tf7 (b7 9) })
(2.5)

If {¢:} consists of Poisson diffeomorphisms, then
L ({fodngodos ) = T{f.g)=0
dt t, 9 O Pt -t) =5 gy =Y,
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hence the right hand side of Equation (2.5) is zero for all times t. As ¢q is the identity map,
we obtain for ¢ = 0 that

X({f.9}) ={X(f), 9} +{f. X(9)}-
Conversely, if 2. holds then the right hand side of Equation (2.5) is zero. This implies that

{fo¢t)go¢t} O¢—t = {f0¢07go¢0} O¢0 = {fvg}u
that is, {¢:} consists of Poisson diffeomorphisms. This proves that 2. < 3. O

Remark 2.7.6. The second characterization in Definition 2.7.5 above says that Poisson vector
fields are the derivations of the Poisson algebra (C*°(M),{-,-}), both with respect to - and to

{’}

Remark 2.7.7. Hamiltonian vector fields are Poisson. Indeed:

Xn({f:9}) —{Xn(f)s g} —{f: Xn(9)} = {h,{f. 9} — {{h, [} 9}t = {f {h. g}}

= _{{f>g}7h} - {{gv h}a f} - {{h) f}?g}
=0 (Jacobi identity).

The converse is not true in general, not even locally. For instance, if the Poisson structure
is identically zero, then every vector field is Poisson while the zero vector field is the only
hamiltonian vector field.

2.8 Poisson cohomology
Poisson manifolds have a cohomology theory of their own: Poisson cohomology. We will discuss
this invariant and address its relation with de Rham cohomology.

Lemma 2.8.1. Let (M,II) be a Poisson manifold. Then for any multivector field & € X*(M),
we have

[IL, [IL, €]} = 0.
Proof. By the graded Jacobi identity in (X*~!(M),[-,"]) (see Remark 2.2.3), we have

= ([0, ), 0] + (=) {[g, 10, 0] + (= 1)* {11, 1], ] = 0. (2:6)
Since II is Poisson, [II,TI] = 0. Graded skew-symmetry of [-,-] gives [¢,TI] = —(—1)*"![IL, &].
Hence Equation (2.6) becomes
As [II, [I1, £]] equals [[II, &], IT] up to sign, it follows that [II, [II, £]] = 0. O

Definition 2.8.2. Let (M,II) be a Poisson manifold. Denote by drj : X*(M) — X*T1(M) the
R-linear operator defined by

dni(§) = [IL .
Lemma 2.8.1 states that dp is a differential, that is dy o dp = 0. We get a cochain complex

(X*(M), dn) :
dn

o k=) A xR () A xR () A
called the Lichnerowicz complex. The cohomology of this complex is the Poisson cohomology.
That is, the Poisson cohomology groups are
_ Ker(dy : X¥(M) — XF1(M))

Hi{(M) T (dyg = X5~ (M) — XF(M))
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Remark 2.8.3. The low-dimensional Poisson cohomology groups have an easy interpretation.
Using Lemma 2.2.5, we see that [II, f] = —¢qf Il = —X;. Hence

Hp(M) = {f € C®(M) : [II, f] = 0} = {f € C®(M) : Xy = 0},

so HY (M) is the space of the so-called Casimir functions.
Next, noting that [II, X] = — £ xII, we obtain for the first Poisson cohomology that

_ {(XeX(M):[II,X] =0} {XecX(M):£xII=0}  {Poisson vector fields}

Hyy (M) {ILfl: feCc>M)} — {X_y:feC>M)}  {Hamiltonian vector fields}’

The second Poisson cohomology group is by definition

) {Aex?*(M): [, A] =0}
Hi(M) = {ILY]:Y € X(M)}

To find an interpretation of H%(M ), we consider a formal one-parameter deformation of II by
M(e) =M+ elly + Ty + -+ -,

for IT; € X2(M) and € a formal infinitesimal parameter. The condition for II(€) to be a Poisson
bivector is

0 = [M(e),II(€)] = [II, TI] 4 2€[IL, T11 ] 4 €2 (2[I1, TIp] 4 [Ty, I]) + - - -

Since II is Poisson, we have [II,II] = 0. If [II,II;] = 0, then the bivector II 4 elIl; satisfies the
Jacobi identity up to order €*:

[T + €Ty, TT + €Ty ] = 0 + O(€?).

We then call II; an infinitesimal deformation of II. In case II; = [II,Y] = —£yII for some
Y € X(M), then II; is called a trivial infinitesimal deformation of II. This terminology is
motivated by the following observation. Let ¢_. denote the time —e flow of —Y. Then the
pushforwards (¢_), I are again Poisson structures, since by Lemma 8.3.2

[(p=0), IT, (o), TT] = (p—), [IL,TT] = 0.
Moreover,
—(p=e) 1| =L ylI=1I,
so that we have an expansion
(p-0), T =TI+ €Ty + O(€?).

We now see that the infinitesimal deformation II; is trivial in the sense that the Poisson struc-
tures (p_.), II are essentially the same, only expressed in different coordinates. We conclude

H2(M) {Infinitesimal deformations of IT}

B {Trivial infinitesimal deformations of 11}

Heuristically, HIZT(M ) = TnM is the “tangent space” at IT to the moduli space of Poisson
structures on M, which is obtained by factoring out diffeomorphic Poisson structures:
Poiss(M

g Poiss(01)

Diff(M)
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Recall that a Poisson tensor II induces a bundle map II* : T*M — TM. By taking exterior
powers, we extend it to a map AFT*M — AFTM. On the level of sections, this is a C°(M)-
linear map, given by

QF (M) = X¥ (M) :ar A Aoy = T (o) A - AT ().
We will denote this map by II* as well. By convention, ITf(f) = f for all f € C®°(M) = Q°(M).

Lemma 2.8.4. Up to sign, the map IT* : Q*(M) — X*(M) is a chain map between the de Rham

complex

N A 0.7 I o L1 6.V WY LR, Vp QA

and the Lichnerowicz complex

o k=1 gy Ak (ag) B k() o

That is, TI*(dn) = —dn(I1*(n)) for all n € QF(M).

Proof. By induction on the degree k of 1.
If n € C°°(M), then

—dn(IF(n)) = —du(n) = ~[IL 1] = gyl = I*(dn)).
If n = df is an exact 1-form, then
I (dn) = TE(d* f) = 0,

and
dn (I (n)) = dn(Xy) = [II, Xf] = —£x, 1T =0,

since hamiltonian vector fields are Poisson.
If the formula holds for n € QP(M) and pu € Q4(M), then it also holds for n A u. Indeed,

T (d(n A ) = T8 (dn A e+ (=1)Pn A dp) = T (d) A TE (1) + (= 1)PTT(n) A TTH(dp)
= —dn (11%(n)) A () — (= 1)PTI*(n) A (1T (1))
= —[ILT1*(n)] ATI* () — (—1)PTI% () A [T, IT%(1a)]
= —[IL,11%(n) A TT*(p)]
= —dn (T (n A p)).

Corollary 2.8.5. We have an induced morphism between cohomology groups
[IF] = Hip(M) — Hf(M) : [n] = [IF(n)].

There are some algebraic topological tools for computing Poisson cohomology, one of which
is the Mayer-Vietoris sequence. However, explicit computation of Poisson cohomology remains
a hard problem. Poisson cohomology groups are generically very big and infinite-dimensional,
which is in contrast with de Rham cohomology (for instance, de Rham cohomology groups of a
compact manifold are finite-dimensional).

Example 2.8.6. If M is equipped with the zero Poisson structure II = 0, then
HY(M) = C>°(M) and HEY (M) = X(M).

In particular, HY(M) and Hf (M) are infinite dimensional (as vector spaces over R).
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Example 2.8.7. If (M, 1I) is symplectic, then II* : T*M — TM is an isomorphism of vector
bundles. Hence the same holds for its exterior powers ITf : AFT*M — AFT M. Tt follows that on
the chain level, we get isomorphisms of C°°(M)-modules TI* : Q¥(M) — X*(M). Since passing
to cohomology is functorial, it follows that the induced maps on cohomology

(1] = Hip(M) — Hiy(M)

are isomorphisms. Hence for a symplectic manifold, the Poisson cohomology groups are isomor-
phic to the de Rham cohomology groups.

2.9 Modular vector fields

We dedicate this section to a specific kind of Poisson vector fields, called modular vector fields.
They will play an important role in this thesis.

Definition 2.9.1. Let (M™,II) be an orientable Poisson manifold. Fix a volume form € on M.

The modular vector field Xﬁ is the derivation given by the map

£x,8
Q

Remark 2.9.2. Since A"T"M is a line bundle, £x,Q and 2 differ by a factor in C>°(M).
Hence, the expression on the right in (2.7) is indeed a smooth function.

XZ:C®(M) = C®(M): f s : (2.7)

So the modular vector field measures to what extent Hamiltonian vector fields preserve a
given volume form. Let us first check that the definition makes sense.

£x.Q
Lemma 2.9.3. The assignment f );{ is a deriwation of C*°(M).

Proof. Since linearity is clear, we only check the Leibniz rule. Let f,g,h € C°°(M). The Leibniz
rule for the Poisson bracket {-,-} implies that

Xyg(h) ={fg,h} = f{g,h} + g{f. h} = fXg(h) + gX¢(h),
whence X, = fX, + gX;. Using Cartan’s magic formula, we compute:
£x, 2= Liyx,19x, Q= d (15x,19x,Q) + 11X, 19x,0
=d (fLXgQ) +d (gLXfQ) + fux,dQ+ gux ,dS2
=df A (LXgQ) + fd (LXQQ) +dg A (LXfQ) + gd (LXfQ) + fix,d+ gux ,dS
=f (d (LXgQ) + Lxng) +g (d (LXfQ) + LdeQ) +df A (Lng) +dg N (LXfQ)
= ffxgﬂ—f—ngfQ + df A (Lng) + dg N (LXfQ) .

Now note that, since € is of top degree: df AQ = 0. It follows that, for any Y € X(M), we have
0=ty (df NQ) =df(Y)Q—=df Aty Q) =Y (/)Q—df A (1y ).

In particular,
{df A (1x,9) = Xy ()R = {g, [}
dg A (1x,Q) = Xp(9)Q = {f, 932 = —{g, 10

So df A (LXQQ) = —dg A (LXfQ) and this implies that £x, Q= f£x, Q+ gLx, Q. O
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Example 2.9.4. Let (M?" II) be a symplectic manifold, with symplectic form w = —II"!. Let
us compute the modular vector field X#" associated with the volume form w™. For f € C°°(M),
we have

Xy =TF(df) = — (") (df),
which implies that ¢x,w = —df. Using Cartan’s magic formula, we get

£x,0 = d(ux,w) + tx,dw = —d* f + 1x,dw = 0,

where the last equality holds since d?> = 0 and w is closed. Using the derivation property of
fo, we obtain by induction that also .£Xfcu" = 0. We conclude that Xﬁn =0.

Proposition 2.9.5. Let (M,II) be an orientable Poisson manifold with volume form 2. The
modular vector field X% is a Poisson vector field.

Proof. Let f,g € C*°(M). We will prove that

Xit ({1.93) = (X1 (f), 9} + { . Xii (9)}- (2.8)

We have

Xt ({f,91) Q= £x,, ,Q
= £x;,x,5 (Lemma 2.7.3)
= [£Xf, £Xg] Q (Cartan calculus)
= £x; (£x,9) = £x, (£x,9)
= £x; (Xi{(9)Q) - £x, (XTH()Q)
= £x, (X{i(9)) @+ Xfi(9)£x,9 — £x, (X{{(f)) Q2 - X{ (/) £,
Note that

{X%(fwxga = X2(/)XH(9)Q
X29)£x,9 = XF()XF(HQ

hence Xj}(f)£x,2 = X%(g)i’fo. We obtain
Xt ({£,9}) Q= £x, (X{i(9)) @ — £x, (X{H(f)) Q
= X7 (X1i(9) Q@ — Xy (X{H(f)) @
= {f, X{1(9)}Q — {9, X{{ (f)}©
= {XH().g} +{f. X0 (9)}] ©,

which implies what we set out to prove (2.8). O
We now describe how the modular vector field depends on the choice of volume form.

Proposition 2.9.6. Let (M",1I1) be an orientable Poisson manifold. Let 2 be a volume form on
M with associated modular vector field X%. Changing the volume form Q changes the modular
vector field Xf—} by a hamiltonian vector field:

h<2 Q
X" =X — Xiogn|s
where h € C*(M) is a non-vanishing function.
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Proof. Since A"I'*M is a line bundle, any volume form on M is of the form A} for some
non-vanishing function h € C*°(M). For any f € C°°(M), we have

B fo(hQ) Xf(h)Q+h£XfQ _ Xf(h) n £XfQ _ Xf(h)

hQ _
X (f) = Q- hQ h 0 h

Since by the chain rule

+ XH(f)-

X pllog ) = dllog IW)(Xy) = Sdh(Xy) = 3 Xp(h),

we get,
X () = Xy (log|hl) + Xii (£) = = Xiog(f) + Xit(f).
This shows that
XH = Xif — Xiog |-
O
By Proposition 2.9.5, the modular vector field Xﬂz defines a cohomology class [Xfﬂ in the

first Poisson cohomology group H{;(M). Proposition 2.9.6 implies that this cohomology class
does not depend on the chosen volume form: [X{}] = [Xy] € H(M).

Definition 2.9.7. The cohomology class [Xp] € Hf(M) of the modular vector field (with
respect to any volume form) is called the modular class of M. If this cohomology class is zero,
then M is called unimodular.

Example 2.9.8. Example 2.9.4 shows that symplectic manifolds are unimodular.

Remark 2.9.9. On non-orientable Poisson manifolds, one can still define modular vector fields
using densities instead of volume forms. We will leave this fact out of consideration.

2.10 Poisson submanifolds

Definition 2.10.1. A Poisson submanifold of a Poisson manifold (M, II,/) is a Poisson manifold
(N, IIy) together with an injective immersion i : N < M that is a Poisson map.

One often identifies an immersed submanifold ¢ : N — M with its image in M, so that
one can assume that ¢ is the inclusion map. The tangent space TN for x € N can then be
considered as a subspace of T, M.

Proposition 2.10.2. Let (M,115) be a Poisson manifold. Given an immersed submanifold
N < M, there is at most one Poisson structure Iy on N that makes (N,IIy) into a Poisson
submanifold. Such Wy exists, if and only if any of the following equivalent conditions hold:

1. (IIp)*(Ty M) C TyN for allz € N.
2. For every f € C*(M), the hamiltonian vector field Xy € X(M) is tangent to N.
3. For all x € N, the bivector (I1yr), is tangent to N. That is, (Ips)y € A2TyN.

Proof. We first show that the conditions mentioned are equivalent. Since for f € C*°(M) and
z € N, we have (Xf), = (ILa)* (dy f), it is clear that 1. and 2. are equivalent.

Next, denoting d = dim(M) and s = dim(N), let (z1,...,24) be adapted coordinates around
x € N, so that N is locally given by xs41 = --- = x4 = 0. In these coordinates, we write

: & 9
Xy = Z{fﬂﬁj}% + Z {fﬂvj}%
j=1

i 5 j
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HM: Z {xuxj} + Z Z {1‘1,.’13]}

1<i<j<s i=1 j=s+1

Assuming that all hamiltonian vector fields on M are tangent to N then implies {f,z;}(z) =0
for j = s+1,...,d, where f is any smooth function on M locally defined around x. In particular,
{zj,zj}(x) =0fori=1,...,dand j = s+1,...,d. This implies that

0
(Iar)z = § {4, -T]} /\ o S /\QTIN.
1<i<j<s Oz; N

Conversely, if (Iys), € AT, N, then {z;,2;}(z) =0fori=1,...,dand j =s+1,...,d. Then

af o af 9
(Xf)w = Z{x’m ]}af 6ac ZZ{xz, ]}8f 8$ e T, N.

i,j=1 i=1 j=1 "

This shows that 2. and 3. are equivalent.
Now assume that i : (N,IIy) — (M,II5s) is a Poisson submanifold. Lemma 2.6.5 gives a
commutative diagram

(I )e
T*N —2~ 5 T,N

(dxi)*/[ ldzi (2.9)
()

T*M —2 s T, M

That is,
dyi o (TT4), o (dgi)* = (%), for all z € N. (2.10)

This shows that (IIy)? (T3 M) C dyi(T,N) for z € N. Since we identify d,i(T,N) with T, N,
we obtain 1. Also, since dgi is injective and (dzi)* is surjective, the relation (2.10) uniquely
determines (Hgt\,)m This proves the uniqueness statement of Proposition 2.10.2.

Conversely, given an immersion i : N < M, assume that (ILp)* (T3 M) C T, N for all z € N.
The natural vector bundle map i* : T*M|y — T*N is surjective, whence it has a splitting
j:T*N — T*M|xn. We define H§V = HL|N oj, which is a map T*N — T'N by the assumption.
It is smooth by composition, and its definition does not depend on the choice of splitting.
Indeed, let x € N and «, 5,0 € Ty M such that o|r, 5 = 8|7, n. Then

(I )o (@) — (T )0 (8), 6) = (I )a(a — B),6) = —((IT)u(8), 0 — B) = 0,

as by assumption (H%w)x(ﬂ) € TpN and (o — )|,y = 0. By construction, H%V makes the
diagram (2.9) commute. It remains to show that IIy is Poisson, i.e. that [IIy,IIy] = 0.
Commutativity of the diagram (2.9) implies that IIy and II;; are i-related. (Use Lemmas
2.6.5 and 2.6.3. Note that at this point, IIy is only almost Poisson, whereas the aforementioned
Lemmas are stated for Poisson structures. Notice however that their statements nor their proofs
make use of the Jacobi identity or of the Schouten bracket being zero, which indicates that they
hold more generally for almost Poisson structures.) By Lemma 8.3.2 in the appendix, also
Iy, x| and [Ty, ITp/] are i-related. As [IIpz, II5z] = O this means that

(dz0)[IIn, ] =0 for all x € N.

34



This in turn implies that [IIy,IIx]|; = 0 at € N. Indeed, surjectivity of (dzi)* : To M — TN
gives that for any fi, fa, f3 € C°(N):

[HNa HN]x(dxfla dmf% dmf3) = [HNy HN] ((dmi)*ala (dri)*a% (dml)*OJg)
[HN7 II ] (061 od i7 Q2 O er7 Q3 o dzl)
((ded) TN, TN ) (@1, @2, 23)

0.

We conclude that [IIy,IIx] = 0, hence Il is the unique Poisson structure on N that makes N
into a Poisson submanifold of M. O

Example 2.10.3. If (M,II) is symplectic, then Hi(T;M) = T, M for all x € M. It follows
that the only Poisson submanifolds of (M, II) are open subsets of M. By contrast, there are
many more symplectic submanifolds of M (for instance, any point {p} C M).

2.11 The splitting theorem

The splitting theorem is a normal form theorem that describes Poisson structures locally. It
generalizes the Darboux theorem for symplectic manifolds to arbitrary Poisson manifolds. We
will need the following lemma.

Lemma 2.11.1. If M is an m-dimensional manifold and X1, ..., X, are vector fields defined
on an open subset U C M such that:

1. {X1(q),...,Xn(q)} is linearly independent at each q € U;

2. [Xi,X;]=0o0nU, for1 <i,j<n,

then any p € U has a coordinate neighborhood (V,x1,...,xy) such that X; = % on 'V, for
i7=1....n

Proof. See [Sh]. O

Theorem 2.11.2 (Weinstein’s splitting theorem). Let (M,II) be a Poisson manifold, and x¢ €
M with rank(Il;,) = 2k. Then there exists a coordinate system (D1, ..., Dk, qly--->Qhy Yis-- -5 Y1)
centered at xo such that

k
0 0 0
Z:ai 8p2 + Z d)’L,j y17"'7yl)6 ayj

1<i<j<l

and (;Si,j(o, ce ,0) =0.

Proof. If rank(Il;,) = 0, then any coordinate system (yi,...,yn) centered at xo satisfies the
theorem. So assume that rank(Il,,) > 0, i.e. HﬁIO : Ty, M — Ty M is not the zero map. This
implies that there exists a function f, locally defined around zg, such that II*(df) = X 7 is
non- Vanishing Lemma 2.11.1 implies the existence of coordinates (p1,...) around xy such that
Xy = 8 . We then have

{fim} = Xs(p1) = 8(;1?1 =1, (2.11)

hence
(X7, Xp,] = Xgpy = X1 =0.
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Here, the first equality is Lemma 2.7.3 and the last equality follows from the Leibniz identity
for the bracket {-,-}. Define ¢; := f.
Note that X, and X, are linearly independent everywhere, since X,, (x) = AX,,, () would
imply

{q1,p1}(x) = Xg, (2)(p1) = AXp, (2)(p1) = Mpr,pr}(z) =0

which contradicts (2.11). We can again use Lemma 2.11.1 to find coordinates (y1, . . ., yn) around
xo such that X, = aiyl and X, = 6%2. We now take (p1,q1,¥s,...,Yn) as a new system of
coordinates. Indeed, the map v : (y1,...,yn) — (P1,4G1,Y3, - - -, yn) has Jacobian matrix
om om |
o5 0
8:[/1 ay2 ............. O 1 *
Oys  Oys  Oys Oys | _ 10
Oy1 Oy2 Oys 7 Oyn | — |__ )
S : 0 [Ln-2)x(n-2)
Oyn  Oyn  Oyn Oyn
LOyr  Oy2  Oys 77 Oyn-

which follows from the computations

27];1 = Xp, (p1) = {p1,p1} =0
d

g%;:Xm(pl) {q 1,p1}—1
% = Xp, (@) ={p1, 1} =
373; = Xg(q1) ={q1,1} = 0.

The latter matrix has nonzero determinant (equal to 1), which shows that 1 is indeed a change
of coordinates. In these coordinates, we have
e {q,;m}=1;
dy;
o {p1,yi} = Xp, (yi) = o= = 0 for i > 3;

i {Q1)yl} :qu(y): g’:f/!; =0 for ¢ > 3.

Hence

0

o 0 2 n 0
5 nayi 83/3"

II=_— + Z ¢z,] b1,4q1,Y3,---
8(]1 8]91 3<i<gj<n

where ¢; ; = {y;, yj}. In fact, the ¢; ; don’t depend on the variables p1, ¢i:
8

d’z,j {yzv y]} Xq1 {yu y]} {QL {y’u y]}}
= {{yj, @i} yiy + Hanvik yi} (Jacobi identity)
=0.
Also, note that X,, = _8%1 (use Lemma 2.7.4). Hence

0 0
aﬁqlﬁbm = aiql{yi,?/j} = —Xp ¥, ¥5} = —{p1,{¥i, v} }

= {yi, {yjp1}} +{y; {p1, vi}} (Jacobi identity)
=0.
Hence,
0 0 0 0

0
1= + i ey Un = AN — +1I.
g 3291 3<§<n¢ 30y )8 dy; " da " O
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Now note that II' is a Poisson structure on an (n — 2)-dimensional manifold with coordinates
(y3y...,yn). Indeed, let {-,-} be the bracket corresponding to II and {-,-}’ the bracket corre-
sponding to i (a priori, the latter is only almost Poisson). If f, g are functions only depending
on the coordinates ys, ..., y,, then we have

{f,9} = T1(df,dg) = TU'(df,dg) = { [, g}

Since {-, -} satisfies the Jacobi identity, this implies that also {-,-}’ satisfies the Jacobi identity.
Hence we can repeat our argument for the Poisson structure IT’, and conclude by induction on
the rank of IT at xg. O

Remark 2.11.3. The splitting theorem states that around any point x, a Poisson manifold is a
direct product of a symplectic manifold (with symplectic form Zle dg; \Ndp;), and a transverse
Poisson manifold with Poisson structure vanishing at x. This explains how the theorem received
its name: a Poisson structure splits locally into a non-degenerate part and a singular part.

M

Figure 2.1: The Poisson structure on M locally splits into a symplectic structure on the locus
{y = 0} and a transverse Poisson structure vanishing at x.

2.12 The symplectic foliation

In this section, we will show that a Poisson manifold is naturally partitioned into symplectic
manifolds. The appropriate notion in this context is that of a foliation.

Definition 2.12.1. A singular foliation of a manifold M is a partition F = {F,} of M in
immersed connected submanifolds F,, called leaves, that satisfies the following property around
any z € M: if F, is the leaf containing =, and m = dim(M) and d = dim(F;), then there exists
a chart h = (y1,...,ym) : U — (—¢€,€)™ such that the path connected component of F, N U
containing x is given by {y4r1 = -+ = ym = 0}, and each level set {ys11 = Cas1,---Ym = Cm}
(where ¢441,...,cn are constants) is completely contained in some leaf F, of F. If all leaves
Fo of F have the same dimension, then F is called a regular foliation.

Remark 2.12.2. Phrased differently, a regularly foliated manifold M is locally modelled as an
affine space decomposed into parallel affine subspaces.
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h(U)

Figure 2.2: A regular 1-dimensional foliation. Figure taken from [Mil]

Definition 2.12.3. A singular distribution A C T'M is the assignment to each x € M of a
subspace A, C T, M, i.e.
A= |_| A,.

zeM

A singular distribution A is smooth if for all z € M and v € A,, there exists a vector field X
locally defined around z, such that X is tangent to A and X (z) = v. If dim(A,) is independent
of x, then the distribution A is called regular.

Example 2.12.4. Let F be a singular foliation. If F, denotes the leaf of F containing x, then
let Af := T, F,. This defines a smooth singular distribution A7 called the tangent distribution
of the foliation F.

Definition 2.12.5. An integral submanifold of a smooth singular distribution A on M is a
connected immersed submanifold N < M such that T,N = A, for all ¢ € N. An integral
submanifold is maximal if it is not contained in any strictly larger integral submanifold.

If a point x € M is contained in an integral submanifold of A, then it is contained in a
unique maximal one.

Definition 2.12.6. A smooth singular distribution A on M is integrable if every point of M
is contained in an integral submanifold of A. If this is the case, then each point lies in a unique
maximal integral submanifold, so the maximal integral submanifolds form a partition of M.

Definition 2.12.7. A smooth singular distribution A on M is generated by a family C of vector
fields if at each point z € M, A, is spanned by the values at x of the vector fields of C.
A distribution A is invariant with respect to a family C of vector fields if for all X € C:

(det)Aw = Ay, (2)- (2.12)
Here (¢) is the local flow of X, and Equation (2.12) has to hold wherever ¢;(z) is defined.
The classical Stefan-Sussmann theorem relates these concepts.

Theorem 2.12.8 (Stefan-Sussmann). Let A be a smooth singular distribution on M. The
following are equivalent:

1. A is integrable.
2. A is generated by a family C of vector fields, and is invariant with respect to C.

3. A is the tangent distribution AT of a singular foliation F.

Proof. See for instance [DT]. O
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Definition 2.12.9. A distribution A is involutive if it is closed under the Lie bracket. That is,
if X,Y are vector fields tangent to A, then also their Lie bracket [X, Y] is tangent to A.

Example 2.12.10. If X € X(M) is a non-vanishing vector field, then span{X} is a smooth
regular involutive distribution by skew-symmetry of the Lie bracket.

We now focus on regular distributions.

Definition 2.12.11. Let A be a regular distribution of dimension n on M™t*. We say that A
is completely integrable if each point p € M has a coordinate neighborhood (U, x1,. .., Zpik)

such that {8%1, e %} is a local basis for A on U.

One clearly has
completely integrable = integrable = involutive.

Indeed, if ¢ € M is contained in a coordinate neighborhood as in Definition 2.12.11, and g
has coordinates (ai,...,antx), then the slice 11 = apt1,...,Tptk = Gpik IS an integral
submanifold through ¢. As for the second implication, we take X,Y € I'(A) defined near q. Let
N be an integral submanifold of A containing q. Then X and Y are tangent to N, hence so is
their Lie bracket [X,Y] (see Lemma 4.1.9). Therefore, [X,Y](¢q) € A,.

The classical Frobenius theorem states that the implications above are actually equivalences:
completely integrable < integrable < involutive.

Theorem 2.12.12 (Frobenius). A smooth regular distribution is involutive if and only if it is
completely integrable.

Proof. See for instance [Lee]. O

Remark 2.12.13. Frobenius’ theorem does not hold for singular distributions. For instance,
consider M = R? with distribution

T(xvy)RQ ifz >0
Aay) = ERUE
span{ g} ifz <0

Let X = 8% and Y = fa%, where f is defined by

Then A is generated by X and Y, so A is smooth. Note also that A is involutive since

[81,8}_8]“8_ 0 ifx<0
oz’ dy dz dy %6_1/12%:%]0% if x>0
But A is not integrable since we cannot find leaves through points on the y-axis.

We now specialize to Poisson manifolds.

Definition 2.12.14. Let (M,II) be a Poisson manifold. It has a characteristic distribution A
defined by
Ay = IE(T;M) = {Xf(2) : f € O%(M)}.

It is clear that A is a smooth distribution, generated by the set of hamiltonian vector fields.
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Lemma 2.12.15. The characteristic distribution A of a Poisson manifold (M,11) is integrable.

Proof. By the Stefan-Sussmann theorem, it is enough to show that A is invariant with respect
to the family of hamiltonian vector fields. Choose f € C°°(M) and let (¢;) be the local flow of
the hamiltonian vector field X;. By Remark 2.7.7, we know that X; is a Poisson vector field,
and thus by Definition 2.7.5 we get that (¢;) consists of Poisson diffeomorphisms. Lemma 2.6.5
gives that

(dode) 0 T © (dopy)* =TT, . (2.13)

Note here that dy¢: and (dg¢¢)* are isomorphisms since ¢; is a diffeomorphism. In particular,
(dz¢pe)* is surjective, whence Equation (2.13) implies that

(dett) Az = Ay, (a)- O

Hence, we find a singular foliation F that integrates the characteristic distribution A. If F,
is the leaf containing x € M, then

Ty M) = Ay = T, T (2.14)

Hence, by Proposition 2.10.2 we get that F, is a Poisson submanifold of (M, II), with uniquely
determined Poisson structure Iz, that is the restriction to F; of the original Poisson structure
I1. That is,

1f,9}) ={fl7., 917} (y) for f,g € C*(M) and y € F,.

Indeed, the inclusion i : F, — M is a Poisson map, and thus

{f,goi={foi,goi}lr,.
Finally, since the inclusion ¢ : F, — M is Poisson, Lemma 2.6.5 implies that
I} (o) = (ILx, )} (a o dyi)

for y € F; and a € Ty M. Together with Equation (2.14), this gives that (H;z)g,(T;]-'x) =Ty Fs.
That is, I, is of maximal rank and thus defines a symplectic structure on the leaf 7.
We summarize:

Proposition 2.12.16. A Poisson manifold (M,11) is foliated into Poisson submanifolds, whose
tangent spaces are spanned by the hamiltonian vector fields of (M,1I). The restriction of the
Poisson structure 11 to each of these submanifolds is symplectic. We call this decomposition F
the symplectic foliation of M, and the immersed submanifolds are the symplectic leaves of M.

The Poisson structure II is completely determined by the symplectic structures on the leaves
of F.

Proposition 2.12.17. LetI1; and Iy be two Poisson structures on a manifold M. Suppose that
both Poisson structures define the same foliation on M and that for every leaf L, the Poisson
(symplectic) structure induced on L by Iy is the same as the Poisson (symplectic) structure
induced on L by Ily. Then IIy and Il are equal.

Proof. Let {-,-}1 and {-,-}2 be the Poisson brackets corresponding to II; and Ils respectively.
By assumption, they determine the same symplectic foliation on M. Let p € M and let £ be
the leaf passing through p. Denote by ¢ : £ — M the inclusion map. It is assumed that the
induced Poisson structures {-,-}; £ and {-,-}2 £ on £ coincide, so that for all f,g € C*>(M):

{foi,goitip={foi,goilar.
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Since ¢ is a Poisson map, both when M is equipped with 1I; and when M is equipped with IIg,
we have

{f,951(p) = {f, ghi(i(p)) = {f o i g 0itr,c(p) = {f 0 i, g 0i}ac(p) = {f, g}2(i(p)) = {f, g}2(p).
This applies to any p € M and all f,g € C*°(M), so that {-,-}1 = {-, }o. O

Remark 2.12.18. In case II is a regular Poisson structure on M, we can readily argue for
the symplectic foliation of M as follows. Invoking Lemma 2.7.3, we see that the characteristic
distribution A of (M, II) is involutive. Using the Frobenius theorem, we find the desired foliation
F integrating A.

Example 2.12.19. Consider R? with Poisson structure IT = ya% A %. Since

0

B0 — _.9
I (dzx) Yaz

—ya—y and II*(dy)

we obtain that the characteristic distribution A is given by

. T(x’y)R2 if Yy 75 0
9740} ity =0

Hence, the symplectic leaves of (R?,II) are the open upper half plane, the open lower half plane
and all points on the z-axis.
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Chapter 3

Basic features of log-symplectic
structures

We will now introduce log-symplectic structures, which are the objects of study in this thesis.
Log-symplectic manifolds form a convenient class of Poisson manifolds that extends the class of
symplectic manifolds. Log-symplectic structures are however in many ways equally well-behaved
as honest symplectic structures, and many results from symplectic geometry can be extended to
the log-symplectic framework. This made log-symplectic structures a topic of intense research
in the Poisson community in the last couple of years.

This chapter is a compilation of basic results and examples taken from various sources. How-
ever, it also contains an important normal form result: we give a particularly neat coordinate
expression for a log-symplectic structure near a point of its singular locus.

3.1 Definition and examples

Recall that a symplectic structure on a manifold M?" corresponds to a non-degenerate Poisson
structure on M?", that is, a Poisson bivector IT whose top wedge power II" is nowhere vanishing.
We will now relax this condition by allowing II™ to vanish linearly. This leads to the following
definition.

Definition 3.1.1. A Poisson structure II on a manifold M?" is called log-symplectic if the map
2
M~ N\ TM:ze— ')
is transverse to the zero section of A28 TM. We call Z = (II")~1(0) its singular locus.

Remark 3.1.2. Honest symplectic structures are also log-symplectic. Our interest goes out to
the bona fide or non-symplectic log-symplectic structures.

The transversality condition implies that the singular locus Z is a codimension-one subman-
fold of M. Indeed, we have that II"(M) and M are 2n-dimensional submanifolds of A?"TM,
and it is a well-known fact in differential geometry that their transverse intersection II" (M) N M
is a smooth submanifold of M, of dimension

dim (I1"(M)) + dim(M) — dim (/\2" TM) = +2n— (2n+1)=2n— 1.

Here we used that A?" T'M is a vector bundle of rank 1 over M, whence its dimension is 2n+ 1.
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It is now apparent that log-symplectic structures (M, Z, II) are not far from being symplectic,
as they are symplectic on the open dense subset M \ Z of M. Moreover, their failure of being
symplectic everywhere is as well-behaved as one can ask, since the zeros of II" are simple and
forced to lie in the hypersurface Z.

Remark 3.1.3. Given a Poisson manifold (M?", 1), we check if IT is log-symplectic as follows:
Choose p € (II")~1(0). Let (U, x1,...,x2,) be coordinates around p, so that on U

0 0
m*=g— A--.
gaxl/\ Aa$2n7

for some smooth function g € C°°(U) vanishing at p. Through the choice of coordinates, we
obtain a local trivialization of A?" TM around p, on which the map II" is given by

m":U - U xR:zw— (z,9(z)).
Then II" intersects the zero section transversely at p

& Im (dpIT") & Ty 0) (U x {0}) = T(p0) (U X R)
& (R? x Im (dpg)) & (R* x {0}) =R* xR
< Im(dyg) =R

& dpg #0

< g vanishes linearly at p.

Now assume that M is orientable. Let 2 be a volume form on M with dual 2n-vector field &.
Since A?"T'M is a line bundle, we can write

" = f¢,

for uniquely determined f € C°°(M). Let p be a zero of II". As before, choosing coordinates
(U,x1,...,x9,) around p, we write

0 0
I =g— .
gaxl A 4 8.%'2n
As 5 5
— A A =h
81‘1 axgn g’U

for some non-vanishing function h € C*°(U), we get on U that
" = ghlu = flu€lu-
Since g vanishes at p, the Leibniz rule gives
dpf = h(p)dpg + g(p)dph = h(p)dpg,

where h(p) is nonzero. Keeping in mind the above discussion, we thus obtain that II" intersecting
the zero section transversely at p is equivalent with d, f being nonzero. Noting that

Z = (")~ (0) = f~1(0),
we conclude:
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Corollary 3.1.4. Let (M?",1I) be an orientable Poisson manifold and assume that II" = f¢,
where € is the dual 2n-vector field of some volume form Q. Then (M?",11) is log-symplectic if
and only if 0 is a regular value of f.

In case M is log-symplectic and orientable, this gives an alternative proof of the fact that
its singular locus Z is a codimension-one submanifold. Indeed, it is the preimage of a regular
value under a map f € C*(M).

The following example shows that the class of log-symplectic manifolds is strictly larger than
the class of symplectic manifolds.

Example 3.1.5 (Following [FM]). Consider the unit sphere S? C R3, where R? is endowed
with cylindrical coordinates (r,#, z). In these coordinates, S? is described by r2 + 22 = 1, and
(6, z) are the induced coordinates on S2. We now claim that w := df A dz is a well-defined,
non-degenerate differential form on S2. Indeed, even though df is ill-defined at the north and
south pole, df A dz extends smoothly over the poles. We will prove this for the north pole, using
Cartesian coordinates.

On the open upper hemisphere, we have z = /1 — 22 — 32 and thus

dz = — v dr — y

dy.
V11— a2 — 2 V1—ax2 -2

Using that 6 = arctan(y/x), we get that

z y
=" dy— —Ydx.
2+ e

Hence,

T T Y Y
dO Ndz = dx Ndy + de Nd
: <x2+y2> (\/1—952—3/2) v <x2+y2> («/1—x2—y2> Ty
_ (=* +y*)
@+ PV

> dx A\ dy.
So the singularity at the north pole is removable, and df A dz extends smoothly as

(0,0)

1
. dzAdy
V1 — 22 — 2

One proceeds similarly around the south pole, using that 2 = —/1 — 22 — y2. From equation
(3.1) and its analog around the south pole, it is clear that df A dz is non-vanishing at the poles.
Away from the poles, it is obviously non-vanishing, whence w = df A dz is a non-degenerate
2-form on S2, as we claimed. Consequently, it has an inverse bivector field w™!. This allows us
to define a bivector IT on S? by

_1 0 0

=z—A

II:= —zw 20" 55

Being a bivector on a surface, II is automatically Poisson (see Example 2.4.7). By Remark

3.1.3, it follows that II is a log-symplectic structure on S2.
Now consider the antipodal action of Zo = {0,1} on S?, that is:

1-0,2)=(0+m,—=z).
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Note that IT is invariant under this action. Indeed, defining ¢ : (6,z) — (0 + 7, —z), we show
that ¢.I1 =II. Since the Jacobian matrix of ¢ at any point is given by

b 4

0 0 0

0
Pa5 =g M 95 =g

Noting that by definition, ¢.z = (¢p~1)*z = —z, we get

0 0 0 0 0 0 0 0
b+ <Zaa A a) = (9+2) <¢*ae> A (%) = (=2)5g <_a) =55 o2

Consequently, IT descends to a Poisson structure IT on the orbit space S2/Zy = RP2. As the
projection S? — RP? is a local diffeomorphism (it is a covering map) and being log-symplectic
is a local property, it follows that II is a log-symplectic structure on RIP?2.

However, RP? is not symplectic since it is not orientable. Thus RP? is a bona fide log-symplectic
manifold.

it follows that

The standard example of a log-symplectic structure is the following.

Example 3.1.6. Consider R?" with coordinates (1, ¥1,...,%n,yn). The bivector IT defined as

o 9 )
M=yg-Ag- Zaxz 3 (3.2)

is a log-symplectic structure on R?". Let us first check that IT is Poisson (i.e. [II,II] = 0), using
the defining properties of the Schouten bracket (Theorem 2.2.2). We have

[H7 H] =

0 0 i, 0
waxmayﬁ;amwax ayﬁzaxl ayl]

The graded derivation property of [-, -] reduces the last term to Lie brackets of coordinate vector
fields, which vanish. Application of the derivation property and Lemma 2.2.5 then gives

Kl N o 0 9 9
FERAR PRl KA kA T e kil sl

"9 B, B, B,
2 —_ — AN —
+ g 81’1 A 6yl Y1 8{[)1 A 8y1

I A I T RN R )
dn ylf)xl oy 0z 8y1 v 8x1 8y1’ylax1 o

[ R d
2 Z@:ﬁi/\ﬁy ] 8x1/\7+ o

)0
8 8yZ dr1 " oy
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As before, the last term vanishes. So

0 0 0 0 0 0 0 0 0 0 0
ML =y1— A +— + 1 N=—.y1 Aa—mA—+y1 A — A —

8:1@1 8901 8 Y1 630 (9 Y1 c')y 8%’1 8y1’ 8.7}1 8y1
- 0 0 0
-9 A —
i (; Ox; . 3%) Mo oy
gy (DA 2N\ 20, 0 0 9
9 dy1 61‘1 8y1 6%1 8y1 B 8901 81‘1 8y1 e
Next, as
17—ty 2 p O n DD
ox1 ayl 0xy, 8yn

Remark 3.1.3 shows that II" is transverse to the zero section. Hence II is indeed a log-symplectic
structure on R?". Its singular locus is the hyperplane Z <+ {y; = 0}.

Example 3.1.6 is prototypical in the sense that every log-symplectic structure looks like that
near its singular locus. We will prove this in the next section.

3.2 Normal form

We will now prove that the expression (3.2) in Example 3.1.6 is a local normal form for log-
symplectic structures near their singular locus. The following lemma is stated in [GMP2],
without proof however.

Lemma 3.2.1. Let (M?", Z,1I) be a log-symplectic manifold. The rank of II at any point x € Z
equals 2n — 2.

Proof. Choose z € Z. Since II" vanishes at z, we have that II, is not of full rank 2n. By
skew-symmetry, its rank is even, whence at most 2n — 2. We will assume by contradic-
tion that rank(Il,) = 2k < 2n — 2. By Weinstein’s splitting theorem, we find coordinates
(U,q1,P1, -+ Qs P> Y1, - - -, Y1) centered at x such that on U:

LI o 0
:;ai 3pz+ Z gbwayz Tj’

1<i<j<l

where the functions ¢;; vanish at z, and 2k + [ = 2n. Hence by assumption, [ is even with
[ > 2. Now note that
0 0 0 0 0 0
M=F_—A=—A A=A A= Awee A =,
dq1 Op Oqr, Opr O oyl
where F' is a homogeneous polynomial of degree [/2 in the variables ¢; ; for 1 < i < j < .
Under the assumption that [ > 2, we have that d,F = 0. Indeed, for convenience we rename

the variables ¢; ; as z1,..., 2, where m = [(l —1)/2, and then we have
F= Z Qiy,..yiga@in """ Rigyeo
(i1, /2) €L
for some index set I C {1,... ,m}l/2 and constants Qir iy Then
1/2

do b = Z Z @iy, ... iy j9 %in () Zij—l('r)dmzijzij—o—l (@) Ziyyg (z) =0,

(i1y0ensis j2) €T 5=1
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since all z;(z) are zero for k = 1,...,m. So we run into a contradiction with the fact that II"
is transverse to the zero section at x. This shows that rank(Il,) = 2n — 2. O

As announced before, we obtain the following coordinate expression for log-symplectic struc-
tures near their singular loci. This seems to be a well-known result [Cav] [GMP2], but a com-
plete proof is not given anywhere. The last change of coordinates we apply in the proof below
is suggested in [GMP2].

Theorem 3.2.2. Let (M?", Z,11) be a log-symplectic manifold and let x € Z. Then there exist
coordinates (U, x1,y1, ..., Tn,Yn) around x such that on U, the hypersurface Z is locally defined
by y1 =0 and

0 0 "0 0
H—ylaxl/\ayl—i-;axi A oy (3.3)

Proof. The splitting theorem and Lemma 3.2.1 give coordinates (V, q1,p1, - -, Gn—1, Pn—1, Y1, Y2)
centered at x such that on V:

n—1
0 0 0 0
=S A ) e A~
'L'Z dq;  Op; o y2)3y1 y2

where ¢ vanishes at . Even more is true: since Il has rank 2n — 2 at points of Z and has full
rank elsewhere, we have that ¢=1(0) = ZNV. That is, ZNV is given by ¢ = 0. Moreover,
as II" is transverse to the zero section, we have that d,¢ # 0. Hence 0¢/dy; or 0¢/0ys must

be nonzero at x. Switching the roles of y; and ys if necessary, we can assume that d¢/dys is
nonzero at . Now consider the map

(QI>p17 . 'aanlvpnflaylayZ) = (diaﬁi?' : 'aq/T—leaEL\;/lagjlvqs(ylva))a

where q; = ¢; and p; = p; for i = 1,...,n — 1 and y1 = y;. This is a change of coordinates
around zx: its Jacobian determinant is

1 0
(2n72)><(2n72)‘ (2n—2)x2
det |0 ... 0 |1 o0 :g‘ﬁ’
) 1% Y2
0 ... 0 |5 22

which by continuity of d¢/dys is nonzero on some smaller neighborhood U C V of z. So

(@1,D1, -+ »qn-1,Pn—1,Y1, ) are coordinates on U. The coordinate vector fields transform cor-
respondingly:
(0
—=—fori=1,...,n—1
D4 qi
0 :iforizl,...,n—l
api apz
0 L 92 op 0
oy 8y1 Oy1 0
o 09 0
(Y2 Dy 99"

Hence, in these new coordinates on U, II is given by
-1

Z p900 0
— 3191 *oys 051 " 06
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where 0¢/0y; is non-vanishing on U. At last, we change coordinates once more:

(41,91, -, Gn—1,Pn—1,91,0) = (@1, P1,- - -, n—1,Pn—1,€, 8),

[
53:/%0@1-

where qz~3 = ¢ and

Oy2
These are indeed new coordinates on U, since
o o 1 L e
oy 09| _ o 00| _qet |22 96| = L
“oo 00| =% e Thoas | T m | "
dy1  0¢ dy1  Oy1 0¢

is non-vanishing on U. The coordinate vector fields transform as

o 10
o5 Do

0 _%o o
d9 090§ 9o

Note that 0/0g; has the same meaning in both coordinate systems, and the same holds for
0/0p;. In the coordinates (U, q1,P1,---,qn-1,Pn_1,&, ¢), we get

which is of the desired form (3.3). Since 5 is a local defining function for Z on U, this concludes
the proof. O

This normal form theorem has some interesting consequences [GMP1] [GMP2].

Corollary 3.2.3. If (M?", Z,11) is a log-symplectic manifold, then Z is a Poisson submanifold
of M and the induced Poisson structure on Z is regular of corank one.

Proof. Let p € Z and choose coordinates (U, x1,y1,...,ZTn,Yn) around p as in Theorem 3.2.2.
So U N Z is given by y; = 0, and

) ) "9 9
Iy =y1— N — .
v=u 0xy " o + ZZ; ox; " 0vi

In particular,
n
0

A
8951-

p

I, =
i=2
This shows that Z is a Poisson submanifold of M. It is clear that the restriction of II to Z has
rank 2n — 2 at all points. This follows immediately from Lemma 3.2.1, but it is also apparent
from the expression (3.4). O

€ N°T,Z. (3.4)
p

yi
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Remark 3.2.4. Away from Z < {y; = 0}, one can invert the bivector

0 0 " 0
M=y A=+
y13w1 oy ;

0y;

- A

to obtain the differential form

n
w=dx; ANdlog|yi| + Zdl‘i A dy;.
i=2
This justifies the terminology “log-symplectic”: w acquires a logarithmic singularity along the

singular locus Z of II.

By Corollary 3.2.3, a log-symplectic structure on M gives for free a corank-one Poisson man-
ifold Z with corresponding codimension one symplectic foliation. The following lemma shows
another way of constructing corank-one Poisson structures out of log-symplectic structures. It
is mentioned in the introduction of [MO2].

Lemma 3.2.5. Let (M?",Z,11) be a log-symplectic manifold. Let X be a Pozsson vector field
on M that is transverse to the symplectic leaves of Z. Then M:=1II+ X A 89 s a corank-one
Poisson structure on M x S*.

Proof. We first check that II is Poisson. We have

[ﬁ,ﬁ} 11, H]+2[H X/\a} + [XA 0 X/\a]

90 90’ " 00
0 0 0
2{11)(/\89] [X/\&L)X/\ae]
0 0 0 0 o 0
—Q[H,X]/\ae 2X/\[H 89] [XAa X]A&9 XA[X/\(%%}
—2(£ H)/\£+2X/\(£ o) — | £ xn 2 /\Q+X/\ o (xnl
X 00 55 X 90 90 % 90
o 0 0 0 0 0
(.,£XX)/\89/\60—X/\<£ 89)A%+XA<£§9X)A80+XAXA<£§O%>

=0,

where we used that £xII = 0 and that IT nor X depend on 6. To argue that I is regular of
corank-one, we note that

~ d
O =" + Il A X A —.
+n 2

On (M \ Z) x S%, the first term does not vanish. Since X is transverse to the leaves of Z, the
second term does not vanish on Z x S'. As the terms cannot cancel each other, it follows that
" is nowhere vanishing, which implies that the rank of II is 2n. O

This lemma is useful in practice because log-symplectic structures (M, Z,II) have a conve-
nient class of transverse Poisson vector fields. Indeed, in the next chapter we will show that
modular vector fields on (M, II) are transverse to the symplectic leaves of Z.

Example 3.2.6 ([GMP2]). Let (N?"*! TI) be a regular corank-one Poisson manifold, X a
Poisson vector field on N and f : S' — R a smooth function. The bivector field

Il = f(@)ge AX 411 (3.5)
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is a log-symplectic structure on S' x N, provided that the function f vanishes linearly and the
vector field X is transverse to the symplectic leaves of N. Indeed, computations similar to those
in the proof of Lemma 3.2.5 show that II is a Poisson structure. Moreover, we have

o+l n+1 9 n 9 n

II =1I +(n+1)f(0)%/\X/\H :(n—kl)f(G)%/\X/\H7
since II"*! is a (2n + 2)-vector field on the (2n + 1)-dimensional manifold N hence necessarily
zero. Since II is of rank 2n, we have that II" is non-vanishing and since X is transverse to the
leaves of N, then also X A II" is non-vanishing. This can be seen, for instance, by choosing
splitting coordinates for II. Consequently, % A X ATI" is non-vanishing on S' x N and the fact

that f vanishes linearly implies that (S' x N, ﬁ) is log-symplectic. Its singular locus consists
of as many copies of IV as f has zeros.

This example is interesting because a slight adaptation of it provides the semilocal model
for an orientable log-symplectic structure in a neighborhood of the exceptional hypersurface Z.
Indeed, let us replace S' by an interval (—¢, €) with coordinate ¢ and take for f : (—e,¢) — R :
t — t the identity function. Consider the corank-one Poisson structure (Z,11z) induced by an
orientable log-symplectic structure (M, Z,1I), and let X be the restriction to Z of a modular
vector field on M. Then the expression (3.5) becomes

15)
II=t—ANX+1Iz,
ot + 1z

which is exactly the normal form for II near Z that we will derive later (see Theorem 5.2.1).
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Chapter 4

b-(GGeometry

Log-symplectic structures are described conveniently in the language of b-geometry. Here “b”
stands for boundary and refers to the calculus developed by Melrose for differential operators on
manifolds with boundary [Mel]. This formalism can easily be adapted to the case of a manifold
with a distinguished hypersurface, examples of which are log-symplectic manifolds.

In this chapter, we introduce the b-category and its main concepts. As it turns out, log-
symplectic structures can be regarded as “symplectic” structures in the b-category. This point of
view allows us to apply symplectic techniques in the study of log-symplectic structures, leading
to extensions of theorems in symplectic geometry to the log-symplectic setting. All these results
put log-symplectic structures closer to the symplectic world than to the usually cumbersome
Poisson world. This chapter roughly follows [GMP2], complemented by the first three sections
of [MO]. Note however that in [GMP2], one works under orientability conditions that we will
not impose.

4.1 b-manifolds and b-differential forms

We will first define b-manifolds and b-maps, which are respectively the objects and the mor-
phisms of the b-category. Next, we introduce the b-tangent and b-cotangent bundle, and the
notion of differential forms on b-manifolds.

4.1.1 b-manifolds

Definition 4.1.1. A b-manifold is a pair (M, Z) consisting of a manifold M and a hypersurface
Z C M. A bmap f: (M, Z1) — (M, Z3) is a smooth map between manifolds f : My — My
such that f=1(Z3) = Z; and f is transverse to Zy. That is

Im(dpf) + Tf(p)ZQ = Tf(p)Mg for all p € Z;.

For our purposes, the example to keep in mind here is that of a log-symplectic manifold M
with its singular locus Z C M. In [GMP2], one only considers b-manifolds (M, Z) for which
both M and Z are orientable, so that one can assume that Z is defined by the vanishing of a
smooth function (See Lemma 4.1.2) that is defined in a neighborhood of Z. However, since log-
symplectic manifolds need not be orientable (see Example 3.1.5), this restriction is too stringent
for us.

Lemma 4.1.2. Let M be an orientable manifold and Z C M a hypersurface. Then Z is
orientable if and only if there exists a b-map f : (U',Z) — (R,{0}), where U’ is a tubular
neighborhood of Z.
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Proof. First assume that Z is orientable. We are asked to find a tubular neighborhood U’ of
Z and a smooth map f : U’ — R such that f~1(0) = Z and d,f # 0 for all p € Z. Equip M
with a Riemannian metric. Consider the normal bundle of Z in M, consisting of the orthogonal
complements of the tangent spaces 1,7 C T,M:

TZ+ :={(p,v) :p € Z,v € (T,Z)*" C T,M}.
We define the normal exponential map exp™ by restricting the exponential map to the normal
bundle:
expt:UCTZ+ — M: (p,v) = exp,(v),
where U is an open neighborhood of the zero section Z C TZ*. Note that at (p, 0p) € TZ+,
the derivative d(;0,) expt : T,Z xT,Z Lo T,M is an isomorphism. Indeed, working in a local
trivialization V' x R near p, let (z,w) € T,Z x R. Consider the curve ¢t — (8(t),wt) in V x R,

where [ is a curve in V passing through p at time ¢ = 0 with tangent vector z. By the chain
rule, we have

d 1 d d d
0t P PO v =G| P = o) P00+ Gl | expao(wy)
d d
=7 xzoﬁ(ﬂ?) + cTy o epr(wy) =2+ w,

where we used that exp,(0) = ¢ and (dexp,)o = Idr, s for ¢ € M. Hence, we have that
dipo,) exp 1 TpZ x TyZt — T, M : (2,0) — 2+ w.

Counting dimensions, it is enough to show that this map is injective. But injectivity is clear since
WM =T,7 EBTPZL. By the inverse function theorem, we find a neighborhood V! € TZ* of the
zero section and a neighborhood U’ € M of Z such that expt : V/ — U’ is a diffeomorphism.
Note that expt takes the zero section of TZ+ to Z. Now, since M and Z are orientable, the
normal bundle is trivial: TZ1 2 Z x R. Denote by m : Z x R — R the projection. We define
f:U = Rby f:=mo (expL)_l. Then f is a submersion, being a composition of submersions,
and thus d,f # 0 for all p € Z. Moreover, f~1(0) = exp-(Z x {0}) = Z.

Conversely, assume we have a b-map f : (U, Z) — (R, {0}). Note that dpf # 0 for all p € Z,
and that (df)|z vanishes on vector fields tangent to Z. Indeed, if X, € T),Z then we have

(dpf) (Xp) = (dp(f’Z))(Xp) =0

as f|z = 0. Hence df|z trivializes the conormal bundle of Z in M. Dualizing, we get that
the normal bundle of Z in M is trivial as well, which along with the fact that M is orientable
implies orientability of Z. O

Remark 4.1.3. In the proof of the “only if” implication of Lemma 4.1.2, we could have taken
a shortcut by applying the Tubular Neighborhood Theorem 1.3.8, which ensures that a neigh-
borhood of the zero section in TZ*+ is diffeomorphic to a neighborhood of Z through a diffeo-
morphism taking the zero section to Z. However, since the proof of the Tubular Neighborhood
Theorem is omitted, it seemed interesting to construct such a diffeomorphism explicitly for
once.

In Lemma 4.1.2, we only managed to find a defining function for Z in a tubular neighborhood
of Z. Extending this function to a global defining function on M is a rather delicate issue in
general. For instance, consider the b-manifold (S!,{p}) where p € S! is a point. Then it is
not possible to find a smooth function on S! that vanishes linearly at p and is non-vanishing
elsewhere. Luckily, for log-symplectic manifolds the situation is a lot easier, as the next remark
shows.
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Remark 4.1.4. Let (M, Z,11I) be a log-symplectic manifold. When M is orientable, a defining
function for Z exists automatically by Corollary 3.1.4. This need not be the case when M is not
orientable. For consider the b-manifold (R]P’Q, ]R]P’l), which is log-symplectic by Example 3.1.5;
then there exists no function f : RP? — R for which 0 is a regular value and f~1(0) = RP!.
First note that RP? \ RP* is connected. Indeed, assume that RP?\ RP! = U UV is a separation
and denote by ¢ : S2 — RP? the quotient map that identifies antipodal points. Since ¢ is
continuous for the quotient topology on RP?, we get that ¢~ 1(U) and ¢~ (V) are disjoint open
subsets of $2, with $2\ S! = ¢~ (U)U¢~ (V). Intersecting ¢~ (U) and ¢~ (V) with the open
upper hemisphere S% would give a separation of S%, if both ¢~'(U) N S% and ¢~ 1(V) N S2
were nonempty. Since S? is connected, it follows that we may assume that ¢~1(V) C S%. The
same argument applied to S% then yields that ¢~ '(U) = S% and ¢~ (V) = S%. But then for
x € ¢~1(U), we have that its antipodal point —z € ¢~1(V). Hence ¢(z) = ¢(—x) € UNV,
which contradicts that U and V separate RP? \ RP!.

Now assume that f : RP? — R is a smooth function with f~1(0) = RPL. Since RP?\ RP! is
connected, and f is never zero on it, f must have constant sign on RP? \ RP!. Replacing f by
— f if necessary, we can assume that f > 0 on RP? \ RP!. But then 0 is a global minimum of
f, which implies that the derivative of f must vanish at all points of RP!. In particular, every
point of RP! is a singular point of f, and 0 is not a regular value of f.

4.1.2 b-tangent and b-cotangent bundles

Definition 4.1.5. Let (M, Z) be a b-manifold. A b-vector field on (M, Z) is a vector field on
M which is tangent to Z at each point p € Z. We denote the set of b-vector fields by *X(M).

Example 4.1.6. Let (M, Z,1I) be a log-symplectic manifold. Since Z C M is a Poisson
submanifold, every hamiltonian vector field on M is tangent to Z at points p € Z. Consequently,
hamiltonian vector fields on M are b-vector fields on (M, 7).

Note that a vector field X € X(M) is a b-vector field on (M, Z) if and only if around every
p € Z, one can find adapted coordinates (U, x1,...,2,) such that Z N U is defined by =1 = 0
and

0 0 0
Xl = — — ... Y ——
lu f1$1ax1 +f28:1;2 +- 4 f oz,
for unique smooth functions fi,..., f, € C®°(U). So the set of b-vector fields is a locally free
C*°(M)-module, with local bases
g 0 0
— e, — Z =0}
{xl 95 Dy’ 783?71} near Z < {x; }
0 0
{8301"”’8:16”} away from Z.

Recall that the Serre-Swan Theorem asserts that the category of smooth vector bundles over M
is equivalent with the category of locally free C°°(M )-modules of finite rank [Tay, Proposition
7.6.5]. We use the following light version.

Theorem 4.1.7 (Serre-Swan). Let M be a smooth manifold. There is a 1 : 1 correspondence
between smooth vector bundles over M and locally free C*°(M)-modules of finite rank.

Proof. Suppose Il : E — M is a vector bundle of rank k. Cover M in opens {U,};c; that
constitute local trivializations of E, and assign to each open U; the C°°(U;)-module M|y,
consisting of sections U; — E. The modules M|y, are free: through local trivialization, sections
U; — U; x R* compose with the first projection to give the identity map on U;. Hence a section
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U — U; x RF corresponds with a function U; — RF. and the latter is just a list of k functions
U; — R. Hence M|y, = C=(U;)¥, and M is a locally free C°° (M )-module of rank .
Conversely, let M be a locally free C°°(M )-module of rank k. For x € M, define

Frp = Mlu, ,
I:):M|Um

where I is the ideal of functions that vanish at z and that are defined on a neighborhood U, of
x so that M|y, is free. Then F, is a k-dimensional vector space: if {m;,..., my} is a basis for
M|y, over C*°(Uy), then {m7,..., My} is an R-basis for F,. Let us first check linear indepen-
dence. Assume rimq + - -+ rymyg = 0 for some r1,...,r, € R. Then rymq + -+ rgmy = 0 in
Fz, which implies that rymq+- - -+rpmy € I M|y,. Hence rymi+- - -+rpmg = fi&1+- -+ fmém
for some f; € I, and &; € M|y,. Expressing the &; in terms of my, ..., my gives that

rimy + -+ rpmg = gimy + - - - + ggMeg,

for some g; € C*°(U,) with g;(z) = 0. But then (g1 —r1)mi + -+ (gr — rx)mi = 0, and since
{mi,...,my} is free over C*°(U,), this implies that g; = r; on U,. In particular, g;(x) =0 = r;.
This shows that {m7,...,mg} is an R-linearly independent set. Next, {7, ..., My} generates
F, over R since

fimi+ -+ fimy = fi(@)ma + -+ fio(x)mi = fi(z)ma + - - + fio(a)mg,

as the functions f; — f;(x) vanish at . Put E := Uyepy Fp and let II: E — M be defined by
II(F;) =x. If U C M is open so that M|y is free (with basis {m1,...,my}), then we have an
isomorphism ¢y : M|y — C®(U)* : frmy+---+ fump = (f1,..., fr). This gives rise to a map

Yy Ely - UxRF:me F, — (z, pu(m)(z)),

which is bijective and an isomorphism in the fibers F, — {z} x R*. Indeed, the map ()|,
is clearly linear, and it is well-defined and injective since

m=m'em-m'e LMy oy(m—m')(z)=0.
By dimension reasons, vy is a fiberwise isomorphism. Moreover, if U NV # (), then we have
Yroyt (UNV)xRE = (UNV) xR¥: (2,0) = (2, (v 0 oy) () (v)),

where we consider ¢y o ¢y, as an invertible (k x k) matrix with entries in C®°(UNV). It is well-
known that the data now obtained determine a smooth vector bundle structure on Il : £ — M
[Lee, Lemma 10.6]. Moreover, M = I'(E) as locally free C°°(M )-modules, for if M|y is free
on basis {m1,...,ms} and f = (f1,..., fx) : U — R¥ is a local section of E, then we have an
isomorphism

P(E)‘U — M’U s f = fimy 4o+ fimy.

So there exists a unique vector bundle over M whose sections are the b-vector fields.

Definition 4.1.8. Let (M, Z) be a b-manifold. The b-tangent bundle *T'M is the vector bundle
whose sections are the b-vector fields on (M, 7).

o6



Note that
o) : _
VM = TpZEB<<$18$1) ‘p> ifpe Z < {x; =0}
T,M iftpég Z

, (4.1)

where it is worth noting that xla%l is nowhere vanishing as a b-vector field, whereas it vanishes
at points of Z when considered as a vector field.

We now show that the b-tangent bundle 7'M has a natural Lie algebroid structure. Recall
that a Lie algebroid over M is a triple (A,[-,-]4,p4), where A — M is a vector bundle,
pa: A— TM is a bundle map and (T'(A), [,-]4) is a Lie algebra, such that

[CL, fb].A = £pA(a)f b+ f- [CL, b]A7 (42)
for a,b € T'(A) and f € C>®°(M). The map p4 is called the anchor.

Lemma 4.1.9 ([Lee]). Let M™ be a manifold and Z C M a k-dimensional submanifold. If
V,W € X(M) are tangent to Z, then the same holds for their Lie bracket [V, W].

Proof. Let i : Z — M denote the inclusion. We first show that there exist smooth vector fields
V,W on Z such that V is i-related with V and W is i-related with W. The fact that V is
tangent to Z means that V), lies in the image of d,i for each p € Z. Thus for each p € Z, there
exists a vector V, € T,,Z such that d,i (Vp) = V},. Since dpi is injective, this vector V,, is even
unique. It remains to show that V is smooth. Choose adapted coordinates around p € Z so
that locally Z is given by 241 = =2, =0. HV =>"" f%a%l in these coordinates, then by

construction V = Zle fi%, which is clearly smooth. We proceed similarly to construct W.

Lemma 8.3.2 in the appendix now implies that [V, W] and [V, W] are i-related. This implies
that [V, W] is tangent to Z. O

We now define a Lie algebroid structure on ?T'M as follows. Since the inclusion map
bX(M) < X(M) is C°°(M)-linear, it comes from a vector bundle map p : *TM — TM,
which we define to be the anchor of *TM. Next, by the above lemma, we can restrict the
Lie bracket on X(M) to *X(M) = I'(*TM). The identity (4.2) follows automatically from the
defining properties of the Lie bracket (see for instance [Lee, Proposition 8.28]).

We can reinterpret the observation 4.1 in terms of the anchor map p : ®TM — TM. Over
M\ Z, the map p is the identity map. Restricting p to Z gives a bundle epimorphism

Y :TM|; - TZ, (4.3)

in the fiber above p € Z <+ {z1 = 0} given by

0 0
teta, | o ag ——

0
‘a2 — 07y

_|_+an
p

L (4.4)

o
"M = T,Z : ay <x1>
p

8$1

» o0z,

A priori, it may seem that the definition of this map depends on the chosen coordinates, but
the proof of the lemma below shows that this is not the case. For suppose (z1,...,z,) and
(y1,...,Yn) are both coordinate systems around p € Z such that z; and y; are defining functions

for Z. Assume that
AR )
1 16951 , 2 072 ) =0 (W o0

The argument below shows that

0

cee by ——
+---+ o,

p

0
+ by o—

9
ot an o o0,

Oxy,

p p p




and then a; = b; by 4.1. Hence we get

a0 0
20.%‘2

9
? )

++an
p

ce by —
Tt g

0z, » nlp

p

Lemma 4.1.10. The kernel of the map (4.3) is a line bundle Lz with canonical non-vanishing
section.

Proof. From the expression (4.4), it is clear that the map (4.3) has a one dimensional kernel at
each point p € Z, which is spanned by (mla%l)‘ if Z is locally given by x; = 0 in adapted
P

coordinates. In particular, the map (4.3) is of constant corank equal to 1, which implies that its
kernel is a line subbundle of *T'M [Lee, Theorem 10.34]. We now show that the b-vector field
xla%l (where Z <> {z1 = 0}) at points of Z is independent of choice of coordinates. So assume
(x1,...,2,) and (y1,...,Yyn) are coordinate systems around p € Z so that both z; and y; are
locally defining functions for Z. Then we must have that y; = hz; for some non-vanishing
function h defined near p. This implies that

0 dy; 0 oh 1 0 dy; 0
or1 8361 8y1 Z 0x1 8y] (8361 h) 9 oy th Z 0x1 8yj
hence

()|, = G, ()| (o), 25 (2, = ()
18:B1 p 81‘1h ! p yl@yl p yl@yl p = 8.%'1 P ylc’)yl p

It follows that we can construct a global canonical trivialization £ of ILz, which is locally given
dl in any adapted chart (z1,...,x,) which expresses Z locally as x; = 0. ]

9
p i

by 1557
Definition 4.1.11. This non-vanishing section £ of Lz is the normal b-vector field of (M, Z).

Remark 4.1.12. In a coordinate-free way, the normal b-vector field £ is locally given by (fv)|z,
where f is locally defining for Z and v is a vector field such that df(v) = 1. It is not hard to
see that this indeed defines a non-vanishing section of Lz and computations similar to those in
previous lemma show that the definition is independent of the choice of f and v.

Definition 4.1.13. The b-cotangent bundle of (M, Z) is the vector bundle *T*M dual to *T M.

Note that, at points p € M \ Z, we have that "TyM = ("T,M)* = (T,M)* = T;M is the
ordinary cotangent space. At points p € Z, the map v, : prM — T, Z from (4.3) is surjective.
Hence its dual map ¢ : T7Z — bT;M is injective. The image of 1 is

(&) = f{a e’y M : a(&) =0},

Indeed, let 8 € T;Z. Then ¢, (8)(&p) = B(¥p(&p)) = 0 since §, € Ker()p), which shows that
Im(y5) C (&)°. Slnce % is injective, we have that dim(Im(¢%)) = dim(7T;; Z) = dim((,)") and
thus

T Z =T () = (&), (45)
Next, let (z1,...,x,) be coordinates around p so that Z is locally defined by 1 = 0. Away from

7, we have a well-defined one form d;”—ll. Its pairing with any b-vector field extends smoothly

over Z, since
0 0 0 dx
<f11’181+f28x2+' fnaxg o > fi.
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It follows that C%l has a smooth extension over Z ¢ {x; = 0} as a section of *T*M, which

we will still denote by dx—xll by slight abuse of notation. Moreover, as (dx—’?)p (fp) = 1, we have
<%)p ¢ (£,)° and hence we conclude
T2 () ) ifpeZe{n=0
bT;M: p < o/, 1p {ZL‘1 } ‘ (4‘6)

M ifpg Z

4.1.3 b-differential forms
Decompositions and the b-de Rham differential

Definition 4.1.14. Let (M, Z) be a b-manifold. For each k € N, we denote by *QF(M) the
space of b-de Rham k-forms, which are the sections of the vector bundle AF(*T*M).

We can view differential forms on M as b-forms on (M, Z) by pulling them back under the
anchor map. Indeed, first note that p : *T'M — TM is an isomorphism on M \ Z, hence so is
its dual map p* : T*M — ®T*M. Then also the induced map p* : AK(T*M) — AF(PT*M) is an
isomorphism on M \ Z, and since this set is dense in M, it follows that on the level of sections,
the map p* : QF(M) — *QF(M) is injective. Concretely, given p € QF(M), we interpret it as an
element of *Q¥ (M) by the rules
€ NY(TEM) = NPT M) atpe M\ Z )
pp = (i*p)p € N*(T32) < N*CTEM)  atpe Z ’

where ¢ : Z < M is the inclusion map.

Typically, b-differential forms on (M, Z) explode near Z. Those that vanish at Z are in fact
honest de Rham forms.

Lemma 4.1.15. Let (M, Z) be a b-manifold and w € *QF(M) a b-de Rham k-form. If w|z = 0,
then w € QF(M).

Proof. Choose coordinates (x1,...,x,) around p € Z so that Z is locally given by z; = 0. In
these coordinates, we write

d:L’l

w= ‘ Z . fi27“_7ik71 ANdxi, N A d.%'ik + ‘ Z ' gi1,-~~,ikdxi1 VANEERWAN da:ik.
1<in<-<ip<n 1<ip<-<ip<n

Since w vanishes on Z, the same must hold for the functions f;, ;. and g¢;, . ; . In particular,

we find functions h;, . ; defined near p so that fi, i = x1hi,, . 4. It follows that away from

Z, we can write

k

dﬂ?l
w= - Z A xlhiz,...,ik?l Ndzi, N\--- Ndxg, + . Z A Gir,in ATy A - N dxg,
1<ig<-<ip<n 1<ip<--<ip<n
= Z hi%.._ﬂ;kd.l?l A d.%iQ VANRIWAN d;rik + Z gil,-..,ikdxH VANRIEIAN dl‘ik,
1<in< <1 <n 1<ii <<t <n
which extends smoothly over Z as a de Rham k-form whose pullback to Z vanishes. O

99



We now describe a suitable decomposition of b-forms. Fix a tubular neighborhood p : E — Z
of Z and choose a metric g on E with corresponding distance function x — ||z|. Construct a
function A : M\ Z — (0, 00) satisfying A(z) = ||z|| for z € E with ||z|| < 1/2, and A =1 on
M\ {x € E: |z|| < 1}. For details on this construction, see the appendix. We now claim:

Lemma 4.1.16. Let (M, Z) be a b-manifold and w € *QF(M) a b-form. We can decompose
w=a+ dlog(\) Ap*(6), (4.8)
for some 6 € Q¥=1(Z) and o € QF(M).

Proof. Let us first show that the differential form dlog(\) on M \ Z extends smoothly over Z
as a b-form. Consider a local trivialization ¢ : p~1(U) — U x R of NZ with coordinate ¢ in the
fibers, and let (z1,...,x,—1) be coordinates on U C Z. Close enough to Z, we then have

)\(1171, .. .,$n_17t) = \/g(t : w_l(:rh <oy Tp—1, 1)7t : 7/1_1(3317 cey Tp—1, 1))

= |t|\/g(¢71($17 vy In—1, 1)5 wil(l‘la vy In—1, 1))
= |t|h($1,...,l’n_1), (49)

where h is smooth and strictly positive since g is positive definite. Hence
dt
dlog(\) = dlog(|t]) + dlog(h) = " + dlog(h), (4.10)

and we already argued above that dt/t extends over Z as a b-form. Hence the same holds
for dlog(A). Now, in the coordinates (z1,...,Zn—1,t), any b-form can be written as a smooth
combination of dt/t,dzx,...,dx,—1. Hence by the relation (4.10), b-forms can equally well be
written as combinations of dlog(\),dx1,...,dr,—1. It follows that around any p € Z, we can
find a neighborhood V' so that w|y can be written as

wly = ay Adlog(A)|y + By,

for some ay € QF~1(V) and By € QF(V). Using a partition of unity subordinate to these opens,
we obtain an open neighborhood O C E of Z and o € Q¥~1(0), 8 € Q¥(0) so that

wlo = a Adlog(\)|o + 8. (4.11)

Now consider the open cover {O, M \ Z} of M and let {7,d} be a partition of unity subordinate
to this cover. Note that 7 is supported inside O, and that v|z = 1. Consider the globally
defined b-form

w —p*(alz) Adlog(\) —vp*(8lz)
and note that

[w = p*(a|z) Adlog(N) — vp*(B|2)] |z = wlz — (p|2)* (a|z) A dlog(N)|z — ¥|z(pl2)*(B]2)
:w\Z—a|Z/\dlog()\)\Z—/B|Z
—0

by equation (4.11). By Lemma 4.1.15, we conclude that w — p*(«|z) A dlog(A) — vp*(B|z) is an
honest de Rham k-form, which we call € QF(M). Tt follows that

w = p*(alz) Adlog(A) +p"(Blz) +n,
which is of the desired form (4.8). O
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Moreover, for a fixed tubular neighborhood and distance function A, we have that # and
a in equation (4.8) are unique. Indeed, the decomposition (4.6) in combination with equation
(4.10) gives that for g € Z <> {t = 0}:

qu*M =T,Z® <(Cit> > =T,29 <(dlog()\))q>.

Hence,
Ak (bT;M) - [/\kT;Z} ® [A’HT;Z A <(dlog(>\))q>} .

Since at ¢ € Z, oy and (p*(@))q have to be interpreted as elements of /\kT;Z and /\k_lT;Z
by the conventions (4.7), it follows that the pullbacks of o and p*(#) to Z are unique. Thus,
denoting by i : Z < M the inclusion, we have that i*(p*(0)) = (p 0 9)*(f) = 6 is unique.
Uniqueness of 6 then also implies uniqueness of a.

Note that 6 is even completely independent of the choice of tubular neighborhood and
distance function A. Indeed, if £ is the normal b-vector field of (M, Z), then we have

te (wlz) = te (a]z + dlog(N)|z A 0) = 0.

This is true since for ¢ € Z we have ¢, oy = t¢,0; = 0 (keeping in mind the conventions (4.7) and
that T Z = (&)° by (4.5)) and t¢, (dlog(A))q = 1 (Use (4.10) and note that ¢, (dlog(h))q = 0
as before, whereas (dt/t),(&,) = 1 as stated in the line above (4.6)). The differential form «
however does depend on these choices. Suppose we have distance functions A and )\, associated
with tubular neighborhoods p: E — Z and p’ : E' — Z respectively. Then we have that A and
A differ by a smooth factor g € C°°(M) that is strictly positive. Indeed, although A and X fail
to be smooth at points of Z, the function g will be smooth: as in equation (4.9), we can write
locally near Z

Mz, .oy Tp_1,t) = |t|h(z1,. .., Tp-1) and N(x1, .oy Tn1,t) = [t|A (21, .., 20_1),

for smooth functions h, b’ that are strictly positive. It follows that we can write ¢ = e/ for some
smooth function f € C*°(M) and get \' = e/ X on M. Hence

dlog(N') = dlog(\) + df.
We then get
w=a+dlog(\) Ap*(0) = o + dlog(N) A (p)*(0) = o’ + (dlog(\) +df) A (p)*(0).  (4.12)
Taking the restriction to Z then gives
alz + (dlog(N))|z A0 = o'|z 4 (dlog(N) + df )|z A 6,

hence a|z = o/|z + [d(f|z)] A 6. In the particular case where X and X\ are defined on the same
tubular neighborhood E’ = E, then equation (4.12) implies that a = o’ + df A p*(6).

Remark 4.1.17. If M and Z are orientable, we can proceed differently. Lemma 4.1.2 ensures
that Z is the zero locus of some defining function f on a tubular neighborhood U. We get a
well-defined one-form df/f on U \ Z, which extends over Z as a b-form. A partition of unity
argument shows that any b-form w € *QF(M) can be written on U as

daf

w|U:a/\?—|—B (4.13)
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for some o € QF~1(U) and B € QF(U) that again have to be interpreted by the rules (4.7).

The decomposition (4.6) again implies that, for a given defining function f, the pullbacks
of a and § to Z are uniquely determined. However, a and 8 themselves are not unique, since
they are defined up to summands of the form hdf for h € C®°(U) and u A df for p € QF—1(U),
respectively. If ¢ is another defining function for Z, then we have f = gh for some h € C*(U)
that is nowhere vanishing. We get

d d
4 _ Y+ dog([h)

f

which implies that
d
wlp =an ;g + (B + a Adlog(|h])).

Being a Lie algebroid, ®TM carries a differential ®d : *QF(M) — bQF+1(M) that satisfies
bdo®d = 0. This differential is determined by the fact that the restriction *Q*(M) — Q®*(M\ 2)
is a chain map. So for w € *QF(M), we have that ®dw is the unique extension of d(wl| M\z) over
Z as a b-form. In the decomposition (4.8), we have

bd(a + dlog(X\) Ap*(0)) = do + dlog(N) A d(p*(6)) = da + dlog(X) A p*(df).

In coordinates (x1,...,xy,) near Z <» {x; = 0}, we write
dzrq
w= > Fissi N liy A Adi + > Giindri, A Ada,
1<ipg<-<ix<n ! 1<iy <<ix<n
and then
0Giy...in \ dz
b . 1,50 | S01 ) . )
dw = Z <a:1 78:1;1 o ANdziy N - Ndxg,

1<ip < <ip<n

n
0iy,....i,
1<iy < <ip<n j=2 J
n

_ Z ZM@/\dl‘j/\dwiz/\”'/\dwik'

1<ip<-<ip<n j=2 dzj 1
As ®d o ®d = 0, we can form the b-de Rham complex

0 = PQ0(M) ~4 bt (ar) 24 b2 () 24 .. My,

Pullbacks and b-derivatives

As expected, one can pull back b-forms under b-maps. Let f: (X, Zx) — (Y, Zy) be a b-map.
We define for all p € X:

b\ . b b
(dfp> T3, Y - PTEX
by the rules:

o If p ¢ Zx then f(p) ¢ Zy, hence bT;X =T, X and bTJZ“(p)Y =T%,,)Y. So we can define
(*df,)" to be the usual pullback by f.

e On T}‘(p) Zy for p € Zx we define (bdfp)* to be the pullback by f|z,-

62



e If y is a local defining function for Zy, then we define for p € Zx:

« [ dy _ f(dy)
Can) (%] ) -5

Note here that f*y is indeed a local defining function for Zx.

_d(f'y)

P

p

We have to check that this definition is consistent. Suppose h is a non-vanishing function,
locally defined near Zy. Then hy is also locally defining for Zy. We have for p € Zx:

d(hy) _ dh dy

—_ — —= (4.14)
hy ‘f(p) Mliw Y lsw)
Now (bdfp)* takes the left hand side of (4.14) to
d(f*(hy))
fx(hy) |,
whereas the right hand side of (4.14) is mapped to
dh a(f* d(f*h d(f*
f<h >+<{w _dh) )
f(p) fy f P Fy
Things check out because
A ()| _ A d)
oy LT R LT

Taking exterior powers, we require (balfp)ak to distribute over the wedge product, and this results
in a well-defined pull-back map (°df)* : *Q¥(Y) — *QF(X). Indeed, the above rules imply that

(#)<yAa+ﬁ =D ot g, (4.15)

where y locally defines Zy and «, 8 are honest de Rham forms. This can be seen as follows:
clearly (4.15) holds at points p ¢ Zx. At p € Zx, we have by definition

[ dy _d(f*y)
() (Y] ) -

. . k—1rpx*
and, since by convention a () € A"71T} ) Zy,

)

p

(") (as) = (/5@
Here (f|7, a)p = (f*a), since by convention
(fra)p = (" (f*a))p = ((f 0 )" (), = (flZx @)ps

where i : Zx — X is the inclusion. Similarly one sees that (bdf][,yk (ﬂf(p)) = (f*B)p, and so
Equation (4.15) is correct. Note that the right hand side of (4.15) is indeed a b-form since
f*y =wyo f is a local defining function for Zx.
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We called this pullback map suggestively (°df)*, since in degree one it is the dual map of
the b-derivative °df : *TX — *TY. We will only need this b-derivative in the most illuminating
case where f is a b-diffeomorphism. We can then push forward vector fields under f, and since
f(Zx) = Zy, vector fields tangent to Zx are taken to vector fields tangent to Zy. Hence a
b-vector field V € I'(*TX) can be pushed forward to f.(V) € I'(*TY), so that at the level of
sections, we can define

TCTX) = TCTY) : V= fu(V).
Since the base map f is a diffeomorphism, this defines a vector bundle map bdf : °TX — *TY.

Remark 4.1.18. To keep the notation short, we will also denote the pullback of a b-form w
under a b-map f by f*w instead of (°df)*(w).

Some properties in b-calculus

The b-differential ®d enjoys the usual properties. It is a degree 1 derivation of the wedge product
A (as is the case in the exterior differential algebra for any Lie algebroid), and it commutes with
the pullback f* of a b-map f: (X, Zx) — (Y, Zy). Indeed, using that the restriction maps

rx (bQ'(X),bd> — (Q°(X \ Zx), d) and 7y (bQ‘(Y),bd) — (Q°(Y'\ Zy), d)
are chain maps and that the usual de Rham differential d commutes with pullbacks, we have
rx (1 (Paw)) = £ (v ("dw)) = £ (@ (ry (@)))
= d(f (ry (@) = d(rx(Fw) = rx ("d(f'w)) -
Hence the equality %d(f*w) = f* (bdw) holds on X \ Zx, and extends over Zx by continuity.

Remark 4.1.19. From now on, we will also denote the b-de Rham differential °d by d.

The usual operations on de Rham differential forms can also be applied to b-forms. For
instance, let w € *Q¥(M) be a b-form and X € *X(M) a b-vector field. Then the flow {¢;} of
X consists of b-diffeomorphisms, and we can define the Lie derivative of w in direction of X as

d
£xw= — ;
XWw dt —0 ¢tw7

where this pullback is well-defined by the above. Next, it is obvious that we can contract b-
forms with a b-vector field. Cartan’s magic formula also still holds, i.e. for w € *Q¥(M) and
X €%%(M), we have

,,EXOJ = d(bxw) + Lxdw. (4.16)
Indeed, using that the restriction map r : *Q¥(M) — QF(M\ Z) commutes with the differentials
and that contraction is pointwise, we have

r(d(ixw)) + r(txdw) = d(r(txw)) + tx(r(dw)) = d(ix(r(w))) + txd(r(w)) = £x(r(w)).

and using linearity of » along with the fact that the ¢; are b-maps:
d d . d «
r(qbtw):r(d <Z>tw> =r(£xw).
tli=o

%
= G| _ o) =g

Hence, Cartan’s formula (4.16) holds on M \ Z and extends over Z by continuity. This recipe
applies to many statements about calculus with de Rham forms. For instance, we will also need
a version of Lemma 8.2.3 in which the p; are b-diffeomorphisms, the X; are b-vector fields and
the w; are b-forms. Lemma 8.2.3 also holds in that b-setup since the b-version of the statement
holds on M \ Z (use that the restriction r is linear and that the p; are b-maps) and extends
over Z by continuity.

£x(r(w))

t=0
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4.2 b-Symplectic manifolds

In this section, we introduce the notion of symplectic for the b-category and present b-analogs
of the classical Darboux-Moser theorems in symplectic geometry. We also prove the important
statement that log-symplectic structures may be regarded as the symplectic structures of the
b-category.

4.2.1 Definition and properties

Definition 4.2.1. Let (M, Z) be a 2n-dimensional b-manifold and w € *Q?(M) a b-form. Then
w is called b-symplectic if it is closed and non-degenerate. Non-degeneracy means that the
associated bundle map

W PTM S M TEM X s iyw
is an isomorphism, or equivalently, that w™ is nowhere vanishing as an element of Q2" (M).

Example 4.2.2. We take the b-manifold (M, Z) where M = (R?*" z1,y1,...,Zn,yn) and Z is
the hyperplane y; = 0. The b-form

d n
w:d:c1/\ﬂ+zd$i/\dyi
oo
is closed, since its restriction to M \ Z is a closed de Rham form. And w is non-degenerate,
since
n_ dyy
w" =nldry AN ——= ANdxo Ndya N\ -+ Ndxy, A dyn,
Y1
is a nowhere vanishing b-form. Hence w is a b-symplectic form on (M, Z). Note that the b-
bivector field IT € T'( A? (*TM )) dual to w is of the form (3.2), whence applying the anchor
map p to it yields a log-symplectic structure. This is no coincidence; we will show later that
the duals of b-symplectic forms are log-symplectic.

That this example is the local prototype of all b-symplectic manifolds is the content of the
b-Darboux theorem, which we will prove soon. But first, we show that b-symplectic structures
are closely related to cosymplectic structures.

Definition 4.2.3. A cosymplectic stucture on a manifold M?"*! is a pair of differential forms
(a,w), where a € QY(M) and w € Q%(M) are closed, such that a A w" is a volume form.

Remark 4.2.4. We have the equivalence

ap #0

4.17
wp : Ker(a,) x Ker(ay) — R is non-degenerate (4.17)

(a/\wn)p#()@{

Indeed, first assume that the right hand side of (4.17) holds. Then dim(Ker(a;)) = 2n, and wy
is nonzero on Ker(ay). So there exist vg, ..., von41 € Ker(ay) such that wj(va, ..., v2,41) # 0.

Let v1 € T,M \ Ker(ay). Then

(e Aw™)p(v1,v2 ..., vang1) = ogp(vi)wy (v, - .., vang1) # 0.

Conversely, if (o A w™), # 0, then in particular o, # 0 hence dim(Ker(cy,)) = 2n. So we can
choose a basis {v1,...,van41} of T,M where vy, ..., von11 € Ker(oy) and v ¢ Ker(ay). Since
(e Aw™), # 0, it evaluates every basis of T, M to a non-zero number. So

(Oé VAN w")p(vl, V..., UQn-i—l) = ap(vl)wg(vg, e ,U2n+1) #0,
which implies that wy (v, ..., ven+1) # 0. Hence wy is nonzero on Ker(ay), which shows that

the right hand side of (4.17) holds.
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Lemma 4.2.5. Let (M?",Z) be a b-manifold with b-symplectic form w. By Lemma 4.1.16, we
can decompose
w = a+ dlog(\) Ap*(6),

for some choice of distance function \. Here § € QY(Z), a € Q*(M) and p : E — Z is the
projection in a tubular neighborhood of Z. Denote by i : Z — M the inclusion. Then:

i) The pair (0,i*«) is a cosymplectic structure on Z.

it) The codimension-one foliation of Z defined by 0 is intrinsically defined. For each leaf

L& 7 of this foliation, the form i} (i*a) is an intrinsically defined symplectic form on L.

Proof. i) We have 0 = dw = da + dlog(X\) A p*(df). The discussion following Lemma 4.1.16
shows that da and df are uniquely determined (for fixed \). Hence they must be zero:
df = 0 and da = 0. Then also d(i*a) = i*(da) = 0. It remains to show that 6 A (i*a)" !
is a volume form on Z. Non-degeneracy of w implies that

W' = a" 4+ na"" A dlog(\) Ap*(6)

is a nowhere vanishing b-form. In particular, it is non-vanishing on Z. Hence by the
conventions established:

W'z = (*a)" + n(i*a)" P A dlog(\)|, A0

is nowhere vanishing. Now (i*«)" = 0 since it is a 2n-form on the (2n — 1)-dimensional

manifold Z. Hence
(i*a)" "t A dlog(N)|, A O

is nowhere vanishing. In particular, (i*a)” ! A 6 does not vanish on Z.

ii) The discussion following Lemma 4.1.16 shows that 6 does not depend on the choice of
distance function A\, i.e. it comes canonically with w. The previous point i) implies in
particular that @ is nowhere zero. Hence it follows that 6 gives a codimension-one foliation
of Z that is intrinsically defined. Next, the discussion following Lemma 4.1.16 shows that
i*a = «z is intrinsically defined modulo summands of the form [d(f|z)] A € for some
feC>®(M). If L is a leaf that integrates the foliation Ker(¢), then

iz ([d(fl2)] A 0) =it ([d(f]2)]) A iL(0) = 0.

So i} (i*«) is intrinsically defined. Clearly 47 (i*«) is closed since « is closed, and (4.17)
shows that i} (i*«) is also non-degenerate. Hence i} (i*«) is a symplectic form on L.
g

We already hinted at the fact that the dual bivector IT of a b-symplectic form w on (M, Z)
is log-symplectic. One might expect that the codimension-one symplectic foliation of Z which
comes canonically with w coincides with the foliation of Z induced by II|z. We will show later
that this is indeed the case.

Remark 4.2.6. We can derive a particularly neat coordinate expression for the restriction w|z
of a b-symplectic form w on (M, Z). What follows is an expanded version of [GMP2, Remark
13]. Choose p € Z and let f be a local defining function for Z. We write near p:

df

w:a/\7+ﬁ.
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Let i : Z < M be the inclusion map, and denote & := i*() and 5 = i*(8). We have

Ozdw:doz/\dff-i-dﬁ,

and since da and df3 are uniquely determined (as argued in Remark 4.1.17), they have to be
zero. So @& and 3 are closed. The same proof as that of Lemma 4.2.5 shows that & A f7! i

nowhere vanishing. Consequently, we have a closed form Be 02%(Z) for which B =0 (belng a
2n-form on a (2n — 1)-manifold) and 3"~! is nowhere zero (since the same holds for & A 37 1).
By the presymplectic Darboux theorem 1.3.16, we find coordinates (x1,x2,y2, ..., Tn,Yn) o0 Z

around p such that
n
= Z dx; N dy;.
i=2

Since & is closed, it is locally exact by the Poincaré Lemma. Hence there exists a smooth
function ¢ defined near p on Z so that

- dg dg dg dg dg

=d —dx d —d ——dzp, + =—dyp.
« g = o1 1+82x2+8 Y2 + - +axnx +6yny
We have that

anprt= (n—l)aa1

is non-vanishing, hence dg/dx; is non-vanishing. It follows that the map

dry Ndxo Adya N -+ ANdzx, A dyy,

($173327?JZ7 o 7xn7yn) — (973327927 o 7$n7yn)

is a change of coordinates on Z near p, since its Jacobian determinant is given by

[dg Oy 99 7
on b oh L/
det dry dry aiyn = det Oy :@,
. . . (9.731
ou O 9 0 | I2n-2)x(2n-2)
[0z Oz 7 Oy

which is non-vanishing. We may hence assume that & = dzx;. Now let # : E — Z be a
tubular neighborhood of Z and consider a local trivialization U X R near p € U. Shrinking U if

necessary, we can assume that (1, z2,y2,...,%n, yn) are coordinates on U, and we let ¢ be the
coordinate on R. Then (7*x1, m*ze, m*ya, ..., 7 Ty, ™Yy, t) are coordinates on U x R, which we
just still denote by (x1,z2,y2,...,%n, Yn,t) as is usual. Since f is a local defining function for

Z <> {t = 0}, we have f = ht for some h non-vanishing. It follows that the map

($173727y2, cee 7$nayn7t) = (3717372,?!27 e 7xnayn7f)

is a change of coordinates on M near p, since its Jacobian determinant at p € Z is

o) = (Gt 1) @) = o)

which is nonzero. Hence in the coordinates (1, 22,2 ..., Tn, Yn, f) on M near p, we have
af <
‘Z—a/\* +B da:l/\——i-dei/\dyi
f =2 7
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Renaming y; := f, we obtain the local expression we were looking for:

dy1 =
wlz = doy AN —+ ) dx; ANdy;
|z ( A § y)

1=2

(4.18)

Z

We need one more ingredient to prove the b-Darboux theorem, namely a b-version of the
local Moser theorem.

Theorem 4.2.7 (Local b-Moser). Let wy and wy be two b-symplectic forms on (M,Z). If
wol|z = w1z, then there exist neighborhoods Uy, Uy of Z in M and a diffeomorphism ~ : Uy — Uy
such that v|z = Idz and v*w; = wo.

Proof. Define w; = wg +t(wi —wp) for ¢ € [0,1]. We will prove that there exists a neighborhood
U of Z in M and an isotopy 7 : U — M, such that v|z = Idz and v/w; = wy for all t € [0, 1].
This then gives the desired diffeomorphism ~; : U — 71(U) between opens around Z, with
Ylz = Idz and yfwi = wo. Suppose {Vi}ejo,1] is an isotopy such that |z = Idz for all
t € [0, 1]. If {vt}4e)0,1) is the associated time dependent vector field, defined by

v = Do
Poar
then v is a b-vector field vanishing on Z. Indeed, for p € Z we have
o d’yt —1 o d -1 o d o d -
vi(p) = —= (v (0) = o _ (v (p) = — _ 7s(p) = - _p= 0,

showing that v; vanishes on Z (in particular, it is tangent to Z). As in Theorem 1.3.10, we have
the following equivalences for such an isotopy:

* d *
Yiwr =wo YVt € [0,1] & %(’tht) =0

. d
& <£vtwt + dtwt> =0
& £ywp = wp — wy
& d (Ly,wt) = wp — wi. (4.19)

Above manipulations are allowed, as is noted in the paragraph following Remark 4.1.19. Because
(wo — w1)|z = 0, the b-form wy — w; is an honest de Rham form by Lemma 4.1.15. Since it is
closed, the relative Poincaré Lemma 1.3.9 gives a neighborhood V' of Z on which wg — wy = df
for some 8 € QY(V) with 3|z = 0. Hence to solve (4.19), it is sufficient to solve

Lo wi = (4.20)

for v;. Note that wi(p) = wo(p) for p € Z, so that each w; is non-degenerate on Z. Since
non-degeneracy is an open condition, each w; is non-degenerate on some open neighborhood V;
of Z. Using the Tube Lemma 1.3.13 and shrinking V' if necessary, we can assume that all w; for
t € [0,1] are b-symplectic on V. We can now solve (4.20) on V as

Ut = (WE)_l(ﬁ)-

The same argument as in the proof of Theorem 1.3.14 gives an open U around Z so that the
isotopy {7:} integrating {v;} is defined on U for all ¢ € [0, 1]:

v:10,1] x U — M.

Since the v; vanish on Z, we have |z = Idz for all t € [0, 1]. This finishes the proof. O
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As in the symplectic case, the local b-Moser theorem can be used to prove a local normal
form result for b-symplectic forms, an analogue of the classical Darboux theorem.

Theorem 4.2.8 (b-Darboux). Let w be a b-symplectic form on (M?*",Z) and p € Z. Then we
can find a coordinate chart (U, z1,y1,...,%n,Yn) around p such that on U, the hypersurface Z
is locally defined by y1 = 0 and

d n
wly =dz1 A % —|—Zdl’i A dy;.

1=2

Proof. By Remark 4.2.6, we find coordinates (V,z!,v},...,z,,y,) around p such that Z is
locally defined by 3] = 0 and

dyl |~
wlynz = (dw’l/\;,l+ E dxéAdyé)
1 i=2

Z

The local b-Moser theorem gives neighborhoods Uy and U; of V N Z inside V' and a diffeomor-
phism 7 : Uy — Uj such that v|ynz = Idynz and

dyy < d(y} o -

v (o n B S nayt) = (o o) A T L S™ et o) iyt ) =
L view =2

So we only have to set U := Uy and define new coordinates

($17y1a"'7$nvyn) = (l‘llo’%yllO’y""?x;’bor}/?y:’bor)/)‘

4.2.2 Log-symplectic equals b-symplectic

We will now show that a log-symplectic structure (II, M, Z) can be regarded as a b-symplectic
structure on (M, Z), and vice versa. Recall that we identify the sections of *T'M with the set of
vector field on M that are tangent to Z, as follows. The anchor map p : ®TM — TM induces
a C°°(M)-linear map on sections

p:T(TM) - T(TM): X — poX

that is injective since p is the identity map on the dense subset M \ Z. As p restricts over Z
to a bundle epimorphism p|z : *TM|; — TZ, the map p is a C°(M)-isomorphism onto the
submodule of vector fields tangent to Z:

p:T(TM) = {Y € X(M) : Y(p) € T,Z for all p € Z}.
Taking exterior powers, also
p:T(N2CTM)) =5 {Y € X2(M) : Y (p) € A*T,Z for all p € Z}. (4.21)
Under this correspondence, we have the following:

Lemma 4.2.9. A log-symplectic structure II on M?™ with singular locus Z is the same thing
as a non-degenerate section I1 € T(A2(°TM)) satisfying [I1,11] = 0, where *T M is the b-tangent
bundle of (M, 7).
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Proof. First assume II is a log-symplectic structure on M?" with singular locus Z. We have
showed in Corollary 3.2.3 that II is then tangent to Z, i.e. II, € /\2TpZ for all p € Z. This
means that I can naturally be considered as a b-bivector II € T'(A2(*T'M)), applying (p) ! as
above. To show that IT € T'(A2(*T'M)) is non-degenerate, we only need to look at points in Z,
since at p ¢ Z we have that 1T} € A2V, M = A?"(°T, M) is nonzero as 11 is log-symplectic. But
around p € Z, we have by Theorem 3.2.2 that

) ) "9 9
M=y — A——
ylal‘l " oy +iz; ox; " y;’

where Z is locally given by y; = 0. Hence

0 0 0 0
o oy Y _ Y 2n
II" =nly; 1/\ Eyl/\ A f n/\ . e '(AN""T'M),

which is non-vanishing as a section of A2*(*T'M). Conversely, assume (M?", Z) is a b-manifold
and we are given a non-degenerate section II € T'(A2(°T'M)) = *X2(M) c X%(M) such that
[II,II] = 0. Again, we only have to check the log-symplectic condition near Z. Let p € Z and
choose adapted coordinates (z1,¥y1,...,Tn,yn) near p such that locally Z is given by z1 = 0.
We can then write

0 0 0

peeon 2p 0 e T(A*"(°TM)) (4.22)

m — 2
for 0z 4 Oy 0zn  OYn

for some smooth function f defined near p. Since IT € I'(A2(*TM)) is non-degenerate, we have
that (4.22) is non-vanishing as a b-2n-vector field. Hence f is non-vanishing, and this implies
that II" vanishes linearly on Z when considered as a section of A?"TM. O

So log-symplectic is the notion of non-degenerate Poisson in the b-category. This shows
why the b-category is useful for our purposes: by considering a log-symplectic structure as a
b-bivector, we get rid of its singularities. As one might expect, it is also true in the b-category
that non-degenerate Poisson and symplectic are equivalent notions. This then establishes the
following correspondence between log-symplectic and b-symplectic structures:

Theorem 4.2.10. Given a b-manifold (M*", Z), a b-form w € *Q%(M) is b-symplectic if and
only if its dual bivector 11 is a log-symplectic structure on M with singular locus Z.

Proof. Given a b-symplectic form w € *Q?(M), we have that «’ : *TM — °T*M can be
inverted to define a b-bivector I = —(w”)~! : *T*M — YTM. Applying the anchor map
p:T(A2(PTM)) — T(A*TM) gives a bivector p(IT), which we call the dual bivector of w. Now,
checking that p(II) is log-symplectic only needs to be done locally near Z (After all, away from Z
we have that w is an honest symplectic de Rham form and that p is the identity map, hence the
dual bivector field II = p(II) non-degenerate Poisson over there). By the b-Darboux theorem,
we can write near p € Z <> {y; = 0}:

d n
w=dx /\ﬂ—FZda:i/\dyi.
oS

In these coordinates,

0 0 N, 0
S 2(b
II=-w Vg A an + 22 oz, A 0 e I'(A*("TM)),
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hence

0 0 0
p(I) = e I(AN’TM
) =15 - A 5m +Za$l 5y € LN°TM),
which is clearly a log-symplectic structure with singular locus Z «+ {y; = 0}. Conversely,
assume II € T'(A2TM) is log-symplectic with singular locus Z. Then II is tangent to Z, and
previous lemma shows that (p)~!(II) is a non-degenerate b-bivector on (M, Z). So we can invert

—1
(([))*1(1'[))li and obtain a b-form w € *Q*(M) by «’ := — (((ﬁfl)(ﬂ))g :TM — PT*M.
We show that this i 1s a b-symplectic form. Away from Z, there is again nothing to prove, since
there w’ = — (Hﬁ) is plain symplectic. Around p € Z <> {y; = 0}, we can write

0 0 "9 0
=y — A — I(A2TM
s " o * ; ox; " i erin )

hence
0 0 - 0
-1 2b
M=y —AN— A (A (°TM
P70 =g g+ D A gy ETNCTM)
and so
dyi
= —((p)" 1))t = daxy A y— + Zd:@ A dy;,
1
=2

which is clearly a b-symplectic form. O

So this dual approach allows us to regard log-symplectic structures as the symplectic struc-
tures on the b-tangent bundle, and in this way symplectic techniques can be used in the study of
log-symplectic structures. In what follows, we will move back and forth between log-symplectic
stuctures and their associated b-symplectic structures, depending on which point of view is the
most convenient. It is important to keep in mind that both notions are equivalent. We will also
denote by II the dual bivector p(II) of a b-symplectic form w, to keep the notation concise.

Remark 4.2.11. We saw in Lemma 4.2.5 that with a b-symplectic form w € *Q%(M) on
(M, Z) comes an intrinsically defined codimension one symplectic foliation of Z. It is no longer
a mystery what this foliation is. Since the dual bivector Il = —w™! € I'(A2T'M) is log-symplectic
with singular locus Z, we know that II|; induces a codimension one symplectic foliation on Z.
It is only natural to expect that these two foliations coincide. This is readily checked. Let
w = a+dlog(\) Ap*(0) for some choice of distance function A, as in Lemma 4.2.5. The leaves of
the foliation induced by w integrate Ker(f), and each such leaf L is endowed with a symplectic
form 7 &, where & is the pullback of o to Z. To show that this foliation is indeed the foliation
of II|z, we have to show that

Ker(0,) = Im(Hg) atpe Z (4.23)

it & = —TII| ;! for each leaf L '

Since ¢ and ¢} & are intrinsic and both statements in (4.23) are pointwise, we can check them
in coordinates choosing any distance function A\. By the b-Darboux theorem, we can choose
coordinates (z1,Yy1,...,%n,Yn) near p € Z <> {y1 = 0} such that

dy1
w|lz =dzy N ==+ dx; N dy; = dxq1 ANdlo + dx; N dy;,
|z A E Y 1 g1 E Y

=2 =2
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where |y1] is a local distance function. The dual bivector IT = —w ™! then satisfies

d d =a 9 9
;= — o0 /\ylayl +Zaxi A o e T(A2(°*TM))

Z 8yl D(A2TM).

=2
So we see that # = —dx, hence at p € Z:

9
p’6y2p

9
" Oxp,

2
p’ ayn

Ker(6,) = span { pr.

} = Im(IT%).
p

That is, the leaves of both foliations are the level sets of 1. On such a leaf L, we have

-1

i*Ld = Zdl’l ANdy; = — (Z aax A az)
i—a i i)\

1=2

=TI .

So if IT € T'(A2T M) is log-symplectic, then we have established that the symplectic foliation
of IT| 7 has a closed defining one-form (namely 6 above) and a closed two-form that pulls back
to the symplectic form on each leaf (namely & above). This is a rather special property, which
will play an important role in next chapter.

Example 4.2.12. The real affine group A(n) is the group of affine transformations  — Az +a
in R™. Thus, the affine group is parameterized by pairs (A, a) consisting of an invertible matrix
A € GL,(R) and a vector a € R™. This correspondence can be used to give A(n) the structure
of a smooth manifold of dimension dim (GL,(R) x R") = n(n + 1). As a group however, A(n)
is not the Cartesian product of the groups GL,(R) and R" since the group multiplication law
is
(A,a) - (B,b) = (AB,a + Ab).

So in fact, A(n) as a group is the semi-direct product A(n) = GL,(R) x R™, and this multipli-
cation law gives A(n) a Lie group structure.

Let us consider the 2-dimensional affine group A(1) consisting of transformations in R of the form
x +— ax+b, where a € Ry and b € R. The group multiplication law is (a,b) - (¢, d) = (ac,ad+b),
with neutral element e = (1,0). The Lie algebra a(1) of A(1) is isomorphic to the vector space
of left invariant vector fields, via a(1) > v — v”. Here vl (p) = (dL,), (v), where L, is left
multiplication by p € A(1). In the coordinates (a,b) on A(1), we have correspondingly a basis

9] 9
dal|,’ Ob|,

of T.A; = a(1). Hence, a basis for the left invariant vector fields is {v1, va}, where
Lap ((1,0) +t(1,0)) = o
=0

0 d

= L —_— = —

U1 d (a,b) (6@ (170)> dt
0

i (a+at,b) = (a,0) = as-

_ 4

L(a,b)(l +t, O)
t=0

dt

and

0 d
V2 = dL(a,b) <8b L(a b)((l’o) + t(o’ 1)) = 77

) L ,b (17 t)
t=0 dt (@

t=0
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d
= — t b) = 0 — 4=
dt =0 (CL, a + ) ( Y a’) a’ab

Now note that the Lie bracket of these vector fields is

O 0N _ 0 (0N _o (0N _ (0 , P\ _p0 _ 0
“aa 6] ~ “aa \"o6) " “ob\"9a) = "\ " “atb) " 9boa ~ ‘00
Hence, the Lie algebra a(1) is span{v;,v2} with [v1,v2] = v2. This gives a corresponding Lie-

Poisson structure IT on the dual a(1)*. If (u1, u2) are the coordinates on a(1)* induced by the
dual basis {v},v3}, then Example 2.4.10 shows that

I = { }i A i — i A i
i 1z Opr  Ops 12 oJTH 3#2'
So the Lie-Poisson structure II is log-symplectic, with critical locus the axis {us = 0} and dual
b-symplectic form
dpz

w=du; N

The symplectic foliation of a(1)* induced by IT integrates Im(IT*) and we have

Im (H%mm)) = span {Hﬁ(dul),ﬂﬁ(dug)} = span {,uQaiQ, —uza(zl} .
Hence, the exceptional hypersurface {uo = 0} is the union of symplectic leaves of dimension 0
(i.e. all points on the line), and the open upper and lower half-planes are symplectic leaves of
dimension 2. This is consistent with previous remark: the foliation of {uy = 0} is defined by
the closed one-form djq on {pue = 0} and the zero form is a closed two-form on {us = 0} which
pulls back to the symplectic form on each leaf.

An interesting side remark is that the Lie algebra a(1) considered in the above example is
the only non-abelian two-dimensional Lie algebra, up to isomorphism.
4.2.3 Modular vector fields of b-symplectic manifolds

In Section 2.9, we introduced modular vector fields on Poisson manifolds. Recall the definition:

Definition 4.2.13. Let (M,II) be an orientable Poisson manifold and © a volume form on it.
Denote by X the Hamiltonian vector field associated to the smooth function f € C*°(M). The
modular vector field Xf—} is the derivation given by the mapping

£x,9
o

X3 :C®(M) — C®(M) : s
Recall that the modular vector field Xﬁ is a Poisson vector field. When II is log-symplectic,

then XI%Z enjoys some convenient additional properties.

Lemma 4.2.14. Let (M?",Z) be a b-symplectic manifold, with b-symplectic form w and dual
log-symplectic bivector I1. The b-Darbouz theorem gives coordinates (X1,Y1,- .-, Tn—1,Yn—1,2,t)
around p € Z so that w can be written as

n—1
1
w = z;da:i/\dyi—i-zdz/\dt.
1=
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Consider the locally defined volume form
Q=dri Ndy1 N+ Ndxp_1 Ndyn_1 ANdz A\ dt.

Working in these local coordinates, the modular vector field X% associated to 11 and € is given
by
0
Xi=-=.
Y

Proof. Since

n—1

o 0, 0
I = iy
Z FENA R AT

Lemma 2.7.4 implies that the Hamiltonian vector field of f € C*°(M) is

n—1
wlrar o of o of o 0f
Xr=2 <axi oy Ous 8331-) Yot Fotos

Using Cartan’s magic formula, we have

£x Q Z[affa(dxl/\ A dt) + d<3f>/\ba(daf1/\-../\dt)

Ty Oy, ZT; y;
_of £ o (dzy N--- Ndt) ( ) d:pl AR dt)]
Qy;~ a; (4.24)
+ z%f%(dwl A Adt) + ( gf> ag (dzy A--- A dt)
—Z%::fgz(dl‘l/\ “Adt) — ( ?) Lo (dzy A--- A dt)

In (4.24), we have
£o (doy A NdE) = drg A Adyjoa A (£adxj> Adyj A Adz Adt
9y, - 9y

+de1A--~/\dyj_1Ad:rjA (,eaayidyj) A---Adz Adt

+dri A Adyp—1 A (,ﬁ’aadz) ANdt+dxy N ANdyp—1 Adz A (£ 5 dt)
Yi

Yi

=0
since £ od = do £. Similarly we find
0= £a%(dx1A---/\dt) = £%(dx1/\---/\dt) = £%(dx1/\---/\dt).
Next,

) (dx1/\---/\dt):—dwl/\'-./\dyi_l/\daji/\daziﬂ/\dyi+1/\---/\dz/\dt,

9y,
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hence

2
<8f>/\ba(d$1/\"'/\dt):< rf dyl>/\(—d:n1/\---/\dyi1/\dm¢/\d$i+1/\---/\dt)

ox; D 0y;0x;
agigxi dxy A --- Adt.
Similarly,
La(zi(da:l/\"-/\dt) =dri A ANdyi—1 Ndy; ANdxipq A+ ANdz A\ dt,
hence

2
d<8f>ALa(d$1A...Adt)_< 8f dxi>/\d:rlA---/\dy¢_1/\dyiAd$¢+1A“-/\dt

ayz Ox; axzayz
0% f
= dxi A --- N\ dt.
8:618% 1
Also,
Lg(dml/\-'-/\dt) = —dr1 A+ Ndz,
t
hence
of O’f
VAN dzi N ---ANdt) = dry N -+ Ndt.
< 32) 4 (91 )= 2 g0,
Finally,
La@(dxl/\”-/\dt) =dry N+ Ndyn_1 ANdt
hence

of _(9f  _Of
d( 8t>/\ba(dl‘1/\ Adt)_<8t+ Sy dxy A Ndt.

In conclusion,

n—1
82 f O2f
0= dzy A Adb — dey A--- Adt
;[8%8% T A A o TIA A
2f of 2f
+ 252 d:nl/\---/\dt—<at+ 88t)dx1/\-~/\dt
0
——8{d$1/\ A dt

due to equality of the mixed partial derivatives. This shows that

£x,8
X ="92=-2.

Hence X} = —0/0t. O
Proposition 4.2.15. The modular vector field of a b-symplectic manifold (M, Z) is tangent to
Z and transverse to the symplectic leaves inside Z, regardless of the volume form considered on

M.
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Proof. Around a point p € Z, we will work in the local coordinates mentioned in Lemma 4.2.14.
With respect to the volume form 2 mentioned above, we have

X2 =-9/ot.

Note that Z is given near p by z = 0; so it has coordinates (z1,y1,...,%n—1,Yn—1,t) whence
X} is tangent to Z. Moreover, the leaves of Z integrate Ker(dt) (as argued in Remark 4.2.11),
hence they are the level sets of the t-coordinate. Therefore, Xf[z is transverse to the leaves of
Z, that is

TyL + span (Xl%z(q)) =T,Z

for ¢ € Z and L the leaf of Z through ¢. If we consider another volume form ', then we have
Q' = HQ for some non-vanishing function H defined near p. Proposition 2.9.6 then shows

o Q
Xi1 = X1 — Xiog|H|»

so that the modular vector field changes by a Hamiltonian vector field. Since Z C M is a Poisson
submanifold, Hamiltonian vector fields on M are tangent to Z at points g € Z (see Proposition
2.10.2). So Xg is still tangent to Z. Moreover, Hamiltonian vector fields are tangent to the
symplectic leaves of M, and in particular to those inside Z. Therefore, Xﬂz, is still transverse
to the leaves of Z. O

The existence of a Poisson vector field transverse to the leaves is rather special and useful.
We will exploit this property later.

4.3 Cohomology theories for b-manifolds

We now discuss some cohomology theories for b-manifolds, and the relations between them. On a
b-manifold (M, Z), we can talk about the usual cohomology theories for the underlying manifold
M, such as de Rham cohomology and Poisson cohomology. However, we can also consider the
complexes of b-forms and b-multivector fields, and study the corresponding cohomology theories.
We will obtain cohomological obstructions for the existence of a b-symplectic structure, similar
to those in symplectic geometry. Since log-symplectic structures can be considered dually as b-
symplectic structures, these obstructions can be used to rule out the existence of a log-symplectic
structure on certain manifolds.

4.3.1 De Rham cohomology and b-cohomology

Recall that on a b-manifold (M, Z) we have the complex of b-differential forms (°Q°(M),"d),
where °d is the b-de Rham differential. The corresponding cohomology groups, denoted by
bH*(M), are the b-de Rham cohomology groups, or b-cohomology groups for short. It turns out
that the b-cohomology groups of a b-manifold (M, Z) are computable in terms of its ordinary
de Rham cohomology groups.

Theorem 4.3.1 (b-Mazzeo-Melrose). On a b-manifold (M, Z), we have the following decompo-
sition for b-cohomology:
"H*(M) = H*(M) & H* ' (Z).

Proof. Fix an adapted distance function A as in Lemma 4.1.16. We first show that there is a
canonical short exact sequence of complexes

0 — Q°(M) -5 bQ* (M) -5 Q*~1(Z) — 0, (4.25)
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where i : QF(M) — *QF(M) : w +— w is the inclusion map, and ¢¢ is contraction with the normal
b-vector field

ve : POF(M) — Q" 1(Z) s w = a+ dlog(\) Ap*(0) = te(w]z) = 6.

Let us check that the maps involved are chain maps. For o + dlog(\) A p*(#) € bQF(M) and
w € QF(M), we have

e Yd(i(w)) = bd(w + dlog(A) A 0) = dw = i(dw).
o d(te(a + dlog(X) Ap*(0))) = df, whereas
ve (Pd(atdlog(N\) Ap*(0))) = te(dat+dlog(N) Ad(p*(0))) = e (da+dlog(N) Ap*(dB)) = db.
Next, we show that for each k € N, the sequence
0 — QF(M) -5 PR (M) =5 QFY(Z) — 0
is exact.

e The inclusion map i is injective: if i(w) = i(w’) for some w,w’ € Q¥(M), then w = ' as
b-forms. Hence w = w’ on M \ Z as de Rham forms. Since M \ Z C M is dense and w,w’
are continuous, we get equality w = w’ on all of M.

e Clearly i is surjective, for if € QF1(Z) is given then ¢¢(dlog()) A p*(8)) = 6.

o For w € QF(M), we have i¢(i(w)) = t¢(w) = 0. Indeed, by convention we have w, € 1,7
for all p € Z, and we have seen that T*Z = (£,)°. Hence Im(i) C Ker(z¢). Conversely, if
a+ dlog(A) A p*(0) € Ker(ig) then 6 = 0, so that a 4 dlog(\) A p*(0) = a = i(«).

Hence the sequence (4.25) is exact, and since £ is canonical, so is the sequence. Next, we show
that the sequence (4.25) splits. A splitting is given by

o:Q7YZ) = Q% (M) : 0 — dlog(\) A p*(6).
Then o is a chain map because
o(df) = dlog(\) A p*(df) = dlog(\) A d(p*(0)) = d(dlog(N) A p*(0)) = d(c(0))
and clearly it splits the sequence as
(tg 0 0) (0) = te (dlog(A) Ap™(6)) = 6.

It is well-known that a short exact sequence of cochain complexes induces a long exact sequence
in cohomology

O mR ) L vER ) S B (2) S B M) — - (4.26)

where ¢ is the connecting homomorphism. The long exact sequence (4.26) gives rise to short
exact sequences of the form

0 — Coker(8) —— H*(M) %5 Tm(zg) — 0. (4.27)
Since ¢ 00 = Idgk-1(z) and passing to cohomology is a covariant functor, we also have
E o0 = Ide—l(Z).
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This implies that 7¢ is surjective and that o is injective. By exactness, the connecting homo-
morphisms ¢ in (4.26) are then zero maps. Hence the short exact sequence (4.27) becomes

0 — H*(M) —5 PHR(M) 5 HY(Z) — 0.

Since oo = Id HE-1(2)) this sequence splits (as does any short exact sequence of vector spaces).
We conclude that

"HY(M) = i(H (M) @ o(H"(2)) = H* (M) © H*1(2),
where the last isomorphism holds by injectivity of i and &. O
Example 4.3.2. For (M, Z) = (52, 5'), we have
bH0(8?) = HY(S?) = R.
PH'(S?) = H'(5?) & HO(S') =R.
e "H2(S%) = H*(S?) @ HY(S)) =R @ R.
e PH¥(S%) =0 for all k > 3.

We obtain some obstructions to the existence of a b-symplectic structure. Proposition 1.2.8
shows that the second de Rham cohomology group of a compact symplectic manifold is nonzero.
The b-analog of this statement is also true.

Proposition 4.3.3. For a compact b-symplectic manifold (M, Z), we have H'(Z) # 0 and
consequently *H?(M) # 0.

Proof. Let w = a + dlog(\) A p*(#) be a b-symplectic form on (M, Z), where a € Q?(M) and
6 € Q1(Z). By Lemma 4.2.5, we know that @ is closed and nowhere vanishing. Let II be the
log-symplectic structure dual to w. Then Z C M is closed, being the vanishing locus of TI".
Since M is compact, this implies that Z is compact as well. If we would have H'(Z) = 0, then
0 would be exact: § = dg for some function g € C*°(Z). Being a continuous function on a
compact domain, the function ¢ has maximum and minimum points on Z, at which 6 = dg
necessarily vanishes. This is impossible. Then, by Theorem 4.3.1 we have

YH2(M) = H*(M)® H*(Z) # 0.

Above proposition shows for instance that (S*,.5%) cannot be log-symplectic.

Proposition 4.3.4. For a compact b-symplectic manifold (M?",Z) with n > 2, we have
H?(Z) # 0 and consequently "H?(M) # 0.

Proof. Let w = a + dlog()\) A p*(#) be a b-symplectic form on (M?", Z), where a € Q?(M)
and 0 € QY(Z). Denote by i : Z < M the inclusion map. By Lemma 4.2.5, we know that i*«
and 6 are closed and that (i*a)"~! A 6 is a volume form on Z. Assume by contradiction that
H?(Z) = 0. Then i*a = du for some one-form p € Q'(Z). Using compactness of M and Stokes’
theorem, we would then get
0 # Vol(Z) = / (i*a)" P A G = / (d)" P Ao = / d(p A (dp)" 2 A 0)
z z z

— [ wntdnyno=o.
oz

where the last equality holds since 8Z = (). Thus H?(Z) must be nonzero, and Theorem 4.3.1
gives YH3(M) # 0. O
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There are also obstructions to the existence of a log-symplectic structure in the usual de
Rham cohomology. Their proofs are technical, so we will content ourselves by just stating the
results.

Theorem 4.3.5 ([MO2]). Let (M?" 1I) be a compact log-symplectic manifold. Then there exists
a class ¢ € H?(M) such that "' € H?*"~2(M) is nonzero.

Compare this to Proposition 1.2.8 in symplectic geometry, which states that for a symplectic
manifold M?", there exists a class ¢ € H?*(M) such that ¢® € H?*(M) is nonzero. For log-
symplectic structures, that property does not hold in general: there are log-symplectic manifolds
that are compact, connected and non-orientable (RP? is such an example) and their top de
Rham cohomology group vanishes altogether. But Theorem 4.3.5 shows that log-symplectic
structures are only a little shy of satisfying this property.

One can use Theorem 4.3.5 to determine which spheres S?" for n > 0 are log-symplectic.
We know that S? is log-symplectic, by Example 3.1.5. Higher-dimensional spheres cannot be
log-symplectic, by Theorem 4.3.5. So a sphere S?” is log-symplectic if and only if it is symplectic.

The following obstruction is more contrastive with symplectic geometry.

Theorem 4.3.6 ([Cav]). If a compact oriented manifold M*", with n > 1, admits a bona fide
log-symplectic structure, then there are classes a,b € H*(M) such that a"~'b # 0 and b* # 0.

This theorem shows, for instance, that CP™ does not admit a bona fide log-symplectic
structure when n > 1. Note however that CP"™ is symplectic; this can be obtained by symplectic
reduction, for instance.

4.3.2 Poisson cohomology and b-Poisson cohomology

Suppose we are given a b-manifold (M, Z) and a Poisson structure IT on M such that Z C M is
a Poisson submanifold. The Poisson bivector II induces a differential diy = [II, -] on the graded
algebra of multivector fields X*(M). The cohomology of the complex

0y xk(A) D xR M) —

c— XYM
is the Poisson cohomology Hfy (M) of M. We can also consider the space of b-multivector fields
bX*(M) =T (A*(°TM)), which consists of the multivector fields on M that are tangent to Z.
Note that (*X*(M),dn) is a subcomplex of (X*(M),dr). Indeed, given ¢ € *X*(M), we have
show that [II,&] is tangent to Z. Since Z C M is a Poisson submanifold, we have that II is
tangent to Z. Also £ is tangent to Z, hence denoting by i : Z < M the inclusion map, we have
that £|z and £ are i-related and that IT|z and IT are i-related. By Lemma 8.3.2 in the appendix,
also [I1|z,€| 7] and [IL, €] are i-related. In particular, [II,¢] is tangent to Z. Hence (°X*(M), dn)
is a subcomplex of (X*(M),dr), or stated otherwise, the inclusion *X®(M) C X*(M) is a chain
map. The cohomology of the complex

coo oy bkl ) A bk gy A bkt ()

is the b-Poisson cohomology bHﬁ(M ) of M. Similar to what happens in the symplectic case,
we have

Theorem 4.3.7. Let (M?",Z) be a b-symplectic manifold, with corresponding log-symplectic
structure I1. Then the b-Poisson cohomology *Hy (M) is isomorphic to the b-de Rham cohomol-
ogy YH*(M).
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Proof. Considering IT as a section of A2(*T'M), we have a morphism IT* : °T*M — T M. Taking
exterior powers, we extend it to a map AF(*T*M) — A¥(®TM). On the level of sections, this is
a C°°(M)-linear map, given by

POR(M) = PxE(M) c oy A Aag = T (ag) A -+ AT (ag).

We will denote this map by II¥ as well. By convention, II*(f) = f for all f € C°(M) = *Q°(M).
Claim: Up to sign, the map ITf : °Q¥ (M) — °X*(M) is a chain map. That is,

11 (°dn) = —dp (1T (1)) for all n € *QF(M). (4.28)
We prove the claim by induction on the degree k of . If n € C°°(M), then
—dn(1%(n)) = —du(n) = —[IL 7] = 1,11 = I (dn) = II* (°dyy),

where we used Lemma 8.3.1 in the appendix. Now let € *Q!(M). It is enough to check (4.28)
in coordinates near Z (away from Z, the equality (4.28) is true by Lemma 2.8.4). We can choose

coordinates such that
0 0 0
II=—
0x1 <y1 oyt > + Z 0x; 8yl

and in these coordinates,

= fi + gdx1 + Z fzdyz + gzdxz)
1=2

On one hand, we get

Hﬁ(bdn) (df N — ” L dg N dx1 + Z (dfi N\ dy; + dg; N da:,))
=2

= II*(df) A TTF <dyl

) >+Hﬁ(d ) AT (dary) + > (T (dfs) A TIH(dys) + TT*(dgy) A TT(day )
1
=2

Yi

_ O iy KANR S
=1t A (5 ) + 100 A (- ) = ST A

=2

On the other hand,

—dn (I (n)) = —dn <fnﬁ @y)) g d)) ~ 3 ) + 0T )

:dn<fail> dn (gyl ) Zdn<fz Z)-gdff(g"ai)'

Here



0 0 0 0
~dn (gay> = [“gay] = —lLaln g, — [“’ ay]

and

So (4.28) is true for b-one forms. Finally, if the formula holds for n € *QP(M) and p € *Q4(M),
then it also holds for n A u. Indeed, using that °d is a degree 1 derivation of A, we have

I (Pd(n A p)) = T (Pdn A i+ (—1)Pn A Pdp) = T (Pdn) A TI () + (—1)PIE () A T (Pdp)
= —dn (I (n)) AT () — (= 1)PTEF(n) A dir (TF (1))
= —[IT, T ()] A T (1) — (=1)P11 () A [T, T ()]
= —[IL, 11 () A TT(1)]
= —dpn (Hﬁ(n 1))

It follows that we have induced morphisms between cohomology groups
[T PH* (M) — "Hf (M) : [n] = [T (n)].

Since I € T (A%(*TM)) is non-degenerate, we have that II* : *T*M — *TM is a bundle
isomorphism. Hence the same holds for its exterior powers IT# : A* (bT*M ) — Ak (bTM ) On
the chain level, we get isomorphisms of C*°(M )-modules IT* : *QF (M) — bX*(M). Since passing
to cohomology is functorial, it follows that the induced maps on cohomology

(%) : °H* (M) — *HE (M)
are isomorphisms. O

There are more conceptual ways to see that the claim in above proof is true. For instance,
we know by Lemma 2.8.4 that TI* is a chain map (up to sign) on M\ Z, so that the claim follows
from continuity arguments.

A more advanced approach is the following. It is well-known that for any Poisson manifold
(N,1I), the cotangent bundle T* N is a Lie algebroid with anchor map IIf : T*N — TN and Lie
bracket [df,dg] = d{f,g}. Trivially, also TN is a Lie algebroid. By a general fact in the theory
of Lie algebroids, the anchor map IIf : T*N — TN is a Lie algebroid morphism. Therefore,
wedges of its dual give a chain map, where I'(A®*T'N) and I'(A*T*N) are endowed with the
induced Lie algebroid differentials, which are the usual Lichnerowicz differential diy and the
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usual de Rham differential d, respectively. Since II* is skew-symmetric, its dual map is —IIf,
and therefore we obtain a chain map

A (~IT*) : (T(A®T*N),d) — (D(A°TN),dn).
Applying this to N = M \ Z, the claim again follows from a continuity argument.

For a log-symplectic manifold (M, Z), the b-Poisson cohomology does not give any additional
information: the b-Poisson cohomology groups are isomorphic to the Poisson cohomology groups
of M.

Theorem 4.3.8. Let (M, Z,11) be a log-symplectic manifold. The inclusion *X*(M) C X*(M)
induces an isomorphism in cohomology, i.e. the Poisson cohomology is isomorphic to the b-
Poisson cohomology:

Hpj (M) = "Hfy (M).

The proof of Theorem 4.3.8 relies on the following Poisson version of Cartan’s magic formula:
If IT is a Poisson bivector and [ is a closed one-form, then we have the equality

L3 © drip + dp o Lg = £Hﬁ(,3) (4.29)

on multivector fields. The proof of (4.29) is a rather painful calculation that can be found in
the appendix.

Proof. (of Theorem 4.3.8) We will construct linear maps h : X*(M) — X*~1(M) such that we
obtain a linear map

C:X°(M) =% (M) : w— w+ (dip o h) (w) + (hodp) (w). (4.30)
This map ¢ is a chain map between the complexes (X°(M),dr) and (°X*(M), dr) since

(dip o ¢)(w) = di(w) + (dip o h o dp)(w),
(C o dn)(w) = dn(w) + (dH oho dH)(w)

Hence it induces a map in cohomology
(€] - HR(M) = "H{y (M) : [w] = [((w)] = [w].

On the other hand, we have that the inclusion i : *X*(M) < X*(M) is a chain map since
(b%‘(M), dn) is a subcomplex of (X*(M), drr), whence we get a map

(i) : "H{y (M) — H{y (M) : [v] = [0].
Clearly, the maps [¢] and [i] are inverses of each other, which then implies the conclusion that
(i) : "HYy (M) = Hiy(M).

Let E be a tubular neighborhood of Z in M, with projection p : E — Z. Let E/ C E be a
smaller tubular neighborhood of Z, and let x be a smooth function supported in E, such that
x| = 1. If w is the b-symplectic form corresponding with II, then we know that with w comes
a canonical closed 1-form 6 € Q(Z) which defines the symplectic foliation of Z (see Lemma
4.2.5 and Remark 4.2.11). We now define the operators h by

h:X(M)— X1 (M) : h(w) := L_pe(6) (XW).
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These are clearly well-defined and linear. It remains to show that ((w) is tangent to Z for all
w € X*(M), where ( is defined in (4.30). To do this, we can work in E' where y = 1 and hence
we must show that

w+ (di o t_pe(g)) (W) + (tpr(p) 0 dmr) (w) € bxk (M) (4.31)
for w € X*(M). Note that p*(6) is closed, so that the Cartan formula (4.29) holds:
Lepr(6) © A+ din © Lop(o) = L1z (9))-

Hence to show (4.31), it suffices to check that w + £_s(p+g)w € bxk(M). First we note that,

since Z C M is a Poisson submanifold, Im(Hf,) C T,Z for all p € Z, so that v := —II*(p*(9)) is
a b-vector field. Next, if £ denotes the normal b-vector field of (M, Z) then we have seen that

| (&) = tewlz) = 0.

On the other hand,
o’ ,wlz) = W (V)7 =’ (= TEF(P*(9))) = p*(0)|2 = i*(p"(0)) = (po )"0 =0,

where we used that w” = —(II)~! (considering II as a section of A2(*TM)), as well as the
convention (4.7). Since «” is invertible (being a b-symplectic form), this then implies that
v|z = £ With this information, we can now show that for all w € X*(M):

w+ £ (o)W = w + [—Hﬁ(p*(e)),w =w+ [v,w] € "X*(M).

Choose adapted coordinates (z1,...,x,) such that Z is locally given by x; = 0. We can write
0 0
w = Z Wiy ey, A
i1 <<, Oiy Oxiy

Since v|z = & = xla%l, we must have that gi|z = 1 and z1|g; for all 2 < i < n. Hence we can
write
- 0
V= L] —,
Z fz 1 al'l
i=1
where fi|z = 1. We get

0 0

w + [V7 'U)] = Z wzl Tk a HRVAN axlk + £Z;}:1 fj$1% Z wll g a A 8x2k
11 <<l <<
n
aw’bl 'Lk 8 a

Z e Zka 896% + Z Zf] ! Ox;j 8%1 O0x;,

11 <---<i i <-<ip \j=1
9 d G,

- Wiy g A fjxl A A A )

ZZ; i1 <z:<zk o a axilfl ‘%zz Z Oxml al'lk

(4.32)

Here
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® D iy (Z?:l fijm “h ’“) O AN % is clearly a b-vector field.

8£Ej 6@1

e The last sum in (4.32) for | =1 gives

Wiy ..in £ 8 f‘l’li VAN VANEEIWAN
11<Z<zk o Oy ]Zl ! Ty axiz axzk
"L O(fx1) B, P
> wip, Ao At Ao
i <<y j=1 Oy 695] di, Oy,
= 8f] O0x1 ) 0 0 0
Wiy oo + f; A A A ,
7,1<Z<Zk o j=1 ( ]6 Ox; 0z, 0z,
where
afj d 5} 0
Wi A A A
7J1<Z<7,k : axll ax] aﬂin 8[133%
is a b-vector field. So we are left with
oxy 0 0
Z Hi Z e Oy 3% : O, hoeh 0z,
11 <o <tp
= G- — | A A--- A
Z . Wiz Z f] ij 6951-2 8xik
1<ig<---<ig j=1

e Note that for [ > 1:

~, 9 of; dr1\ 0 of; 0
Z fion ox; | Z <(9:L‘” i 8:%) oz Z 0z, o Oxj’
7=1 7j=1 7j=1

where the last equality holds since i; > 1 for > 1. Hence the last sum in (4.32) for [ > 1
gives a b-vector field.

So omitting all terms in (4.32) that are for sure b-vector fields, we are left with

0 = 0 0 0
Z Wiy - zka A 8.%'% - Z Wig--iy, J;f]al'] A 8.%’Z'2 VANRERIVAN 8'%'% . (433)

11 <<l 1<ig <<y,

To show that this is a b-vector field, we consider its terms containing 9/0x;:

dow O N9 pnf dYooow f 2 O noon?
lig-tp o - e - lig---ip ]. : -
1<in <<y, Oy Oxi, O, 1<ig < <y, 89:12 Oy,
0 0 0
= Y (Whigeiy — Whigeiy 1) 5 — AT AR (4.34)
1<ig <<y, i2 i

Since fi|z = 1, we have that (4.34) vanishes on Z, so that the coefficients wiy...i, —W14y-..i,, f1 are
smooth multiples of 1. This shows that also the remaining terms (4.33) are b-vector fields. [
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Recall that the inclusion *X®(M) < X*(M) is induced by the anchor map p : *TM — T M,
whereas the inclusion Q®(M) < *Q®(M) is induced by its dual p* : T*M — *T*M. Hence, in
conclusion of this section, for a log-symplectic structure (M, Z,II) we have a diagram of vector
bundles and vector bundle maps

‘M — s TM

(p‘l(H))ﬁ /{Hﬁ :

M —— T"M
On the level of sections, it becomes a diagram of complexes with chain maps (up to sign)

bX (M) — X%(M)

(p‘l(H))ﬁ Tnﬁ ’

QA (M) +—— Q*(M)
two of which induce an isomorphism in cohomology

PHfy (M) —— Hpj(M)

-

bHo(M) H®

)
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Chapter 5

The structure of log-symplectic
manifolds near their singular loci

In light of the objectives of the thesis, this chapter contains the main results. It aims to
describe log-symplectic structures (M, Z, II) semilocally, in a neighborhood of the singular locus
Z. Following [BOT, Section 4.1], we present a normal form model for log-symplectic structures
(M, Z,11), valid in a tubular neighborhood of Z. Next, we will address log-symplectic extensions
of corank-one Poisson structures. In [GMP2], one obtained necessary and sufficient conditions
for a corank-one Poisson structure II; on Z to be induced by a log-symplectic structure. We
will see to what extent such log-symplectic extensions are unique, presenting statements from
[GMP2] complemented by some original observations and proofs.

5.1 Cosymplectic structures revisited

We first elaborate on the brief introduction to cosymplectic structures given in the previous
chapter, as these will play a key role in what follows. Cosymplectic structures show up naturally
when dealing with corank-one Poisson structures. This is demonstrated by the next theorem,
which is mentioned in [MO], and which serves as a refinement of [GMP1, Proposition 18].

Theorem 5.1.1. Let M be a manifold. There is a one-to-one correspondence between cosym-
plectic structures on M and reqular corank-one Poisson structures on M, endowed with a trans-
verse Poisson vector field.

Proof. First assume we are given a pair (I, X) € X2(M) x X(M), where II is a Poisson bivector
and X is a Poisson vector field transverse to the leaves. We will construct a cosymplectic
structure (a,w) € QY(M) x Q?(M) that is uniquely defined by the following rules:

Ker(ay) =T,L for all p e M, where L is the symplectic leaf through p.
a(X) = 1.

Wlker(a) = = (MlKer(a) -
txw = 0.

(5.1)

Let us first construct a € Q'(M). The vector field X is a global trivialisation of the normal
bundle TM/TF, where F is the symplectic foliation of II. Hence also the conormal bundle
(TM/TF)* = Ann(TF) is trivial, so it has a global trivialisation 3 € Q!'(M). Note that
Ker(8,) = T,L for all p € M, where L is the leaf through p. Now S(X) = f, for some
f € C°°(M) that is nowhere vanishing. Defining o := (1/f)3, we have Ker(a,) = T),L for all
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p € M, where L is the symplectic leaf through p. And a(X) =1, so a is as desired in (5.1).
Next, we construct w € Q2(M). Tt is well-known that the complex Q°(F) of differential forms
along the leaves of F fits in a short exact sequence of complexes

0 — Q%(M) — Q*(M) -5 Q*(F) —» 0, (5.2)

where Q% (M) is the kernel of the map r, which restricts differential forms on M to T'F. The
family of symplectic forms on the leaves of F defines a foliated differential form wr € Q?(F),
and exactness of the sequence (5.2) implies in particular that we can find n € Q2(M) such
that 7 extends wr, i.e. 7(n) = wr. Now txn is a one-form, which we call 3 € QY(M).
Define w := n + 8 A «, where « is as constructed before. Since a@ € I'(Ann(7TF)), we have
r(w) = r(n) = wr. Moreover, we have

txw=1xn+ (txp)a—Bxa)=1xn—F =0,

since txya =1 and txf = n(X, X) = 0 by skew-symmetry. Hence w satisfies

{w’Ker(a) == (H’Ker(a))_l

txw =20

as required in (5.1). We now show that the pair (o,w) is a cosymplectic structure on M,
following the characterization (4.17). We have by construction that « is nowhere vanishing and
that w|ger(q) I8 non-degenerate, hence we only have to show that a and w are closed. To show
that da = 0, we only have to check that da vanishes on pairs of the form (X, X;,) and (X, Xy),
for g,h € C°>°(M). We have

da(Xg, Xp) = Xg(a(Xp)) — Xn(a(Xg)) — a([Xg, Xp])
= Xy(a(Xn)) — Xn(a(Xy)) — a (Xgny)
=0,

using Lemma 2.7.3 in the second equality. The last equality holds since Hamiltonian vector
fields are tangent to the leaves of F and a € I'(Ann(7T'F)). Next, we have

da(X, Xg) = X(a(Xy)) = Xg(a(X)) — a[X, X4)). (5:3)

As before, a(X,) = 1, and also X4(a(X)) = 0 since a(X) = 1. To inspect the last term in
(5.3), we compute for h € C*°(M):

[X’ Xg](h) = X(Xg(h)) - Xg(X(h))
=X ({g,h}) — {9, X(h)}
={X(9), h} + {9, X(h)} — {g, X (h)}
={X(9).h}
= Xx(g)(h),

using that X is a Poisson vector field. Hence [X, X,] = Xx(, and in particular [X, X,] is
tangent to the leaves of F, so that «([X, Xy]) = 0. So the right hand side in (5.3) is zero, and
we conclude that « is closed. Similarly, to show that w is closed, we only have to check that dw
vanishes on triples of the form (X, X5, Xy) and (X, X4, X},) for g, h, k € C°°(M). First of all,
we have

dw(Xg, X, Xp) = drwr(Xg, X, Xg) = 0,
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using that wr is a foliated two-form that is closed for the leafwise de Rham differential dr.
Next, we note that

wp (Xg(p), Xn(p)) = (wi), (Xg(p), Xn(p))

(«1) (Th(dns)) (Xn(o)
(«h) (@(dp(ol)) (X))
(dp(912))(Xn(p))

(dpg)(Xn(p))

— (Xn(9)) (p)
={g,h}(p),

where L is the leaf through p, wy is the symplectic form on L and IIj is the non-degenerate
Poisson structure induced on L. This computation shows that w(Xg, X;,) = {g, h}. Therefore,

wi

deo(X, Xy, Xp) = X (w(Xg, Xn)) = Xg((X, Xn)) + Xn(w(X, X,))
—w ([Xv Xg]a Xh) tw ([Xa Xh]? Xg) —w ([X97Xh]7X)

= X({g.h}) = Xy (txw(Xn)) + Xp (exw(Xy))
= w (Xx(g): Xn) +w (Xx(n), Xg) + txw(Xign})
= X({g,h}) —{X(9),h} — {g, (h)}

= 0’
where we used that :xw = 0 and that X is a Poisson vector field. Hence also w is closed, and
we conclude that (o, w) € QY (M) x Q2(M) is a cosymplectic structure.

For the converse, we start with a cosymplectic structure (o, w) € QY (M) x Q?(M). These
data determine a codimension-one symplectic foliation (F,wx) on M, as follows:

e The one-form o € Q(M) is nowhere vanishing and closed, hence Ker(a) is an involutive
corank-one distribution. Indeed, if X,Y € I'(Ker(«)) then

0= da(X,Y) = X(a(Y)) - Y(a(X)) - a([X, Y]) = —a([X,Y]),

so that [X,Y] € I'(Ker(«)). Frobenius’ theorem gives a uniquely determined codimension-
one foliation F of M integrating the distribution Ker(a).

e By the characterization (4.17), we know that w|ger() is non-degenerate, hence w pulls
back to a symplectic form on each leaf of F. Therefore, w defines a leafwise symplectic
form wgr.

n [Vai], one shows that there exists a unique Poisson structure IT on M inducing the given
symplectic foliation (F,wzr). Namely, we can define a Poisson bracket on C'°°(M) by

{f,g}(x) =wr (XJ%7X9L) (J?),

where L is the leaf passing through = and X¥, XgL € X(L) are the Hamiltonian vector fields
computed with the symplectic structure wy, on L. Evidently, II is of corank one.
Next, we attach to the pair («,w) a vector field X € X(M), uniquely defined by the rules

{;)E;u():i . (5.4)
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To construct this vector field, we proceed as follows. The one-form a € Q'(M) trivializes
the conormal bundle (T'M/TF)*, hence also the normal bundle T'M /T F is trivial. So we can
choose Y € X(M) such that Y is nowhere tangent to the leaves of F. Rescaling Y, we can
make sure that o(Y) = 1. We now have that tyw is a one-form on M, which we call 3. Define

X :=Y +1I*(B). Since IT¥(B) is tangent to the leaves of F, and o € T(Ann(TF)), we still have
a(X) =a(Y) = 1. But we also claim that txw = 0. Indeed, we will show that

bt (g,)@p = ~Pp

and to do this, we have to show equality on the vectors Y}, and V), where V), is an arbitrary
vector in 7T,L and L is the leaf through p. We have

(Lﬂg(ﬁp)wp> (Yp) = = (1v,) (Hﬁ(ﬁp)) =—bp (Hﬁ(ﬁp)) = —TIL,(8p, Bp) = 0,

and also
—Bp(Yp) = — (Lprp) (Yp) = —wp(Yy,Y,) = 0.

Next, using that L C M is a Poisson submanifold with induced non-degenerate Poisson structure
11, satisfying II; = —w;l, we have

(v, 0) (Vo) = p (TT5(3,). V5

where we denoted by E the pullback of 8 to the leaf L. So we showed that txw = 0, and
therefore X € X(M) is as desired in (5.4). For sure, X is transverse to the leaves of II since
a(X) =1 is nowhere zero. It remains to show that X is Poisson, i.e. that £xII = 0. Since II is
constructed out of o and w, it suffices to show that £ xa = £xw = 0. This is readily checked,
since by Cartan’s magic formula

Lxa=dlxa)+ixdo=d(1)+0=0

and
£xw=d(txw) + txdw =0,

using that a(X) = 1 and txw = 0, along with the fact that o and w are closed. So the pair
(I, X) € X2(M) x X(M) indeed consists of a corank-one Poisson structure and a transverse
Poisson vector field. At last, the assignments described above are clearly inverse to each other,
and therefore the theorem is proved. O

So the duality between two-forms and bivectors is rather subtle. In the non-degenerate case,
there is a one-to-one correspondence between non-degenerate Poisson bivectors and symplectic
forms. When the rank is not maximal, the duality is less straightforward. A cosymplectic pair
(a,w) € QY(M) x Q?>(M) induces a corank-one Poisson structure IT on M; there are however
several such pairs inducing II. The ambiguity disappears once we specify a direction transverse
to the leaves.

With Theorem 5.1.1 in mind, we obtain the following addendum to Lemma 4.2.5.

90



Lemma 5.1.2. Let w be a b-symplectic form on (M,Z), and let I1 be the dual log-symplectic
structure. As in Lemma 4.2.5, we can decompose

w = a+ dlog(\) Ap*(6), (5.5)

for some choice of distance function X\. Here 0 € QY(Z) and a € Q*(M) are closed, and the
map p : E — Z is the projection in a tubular neighborhood of Z. Let i : Z — M denote the

inclusion and set & := i*a. Then (0, ) is the cosymplectic structure on Z corresponding with
the pair (I1|z,1I* (dlog(N\))| ) -

Proof. For short, we write IIz := II|; and
X = [(dlog() = —(«") ! (dlog(N)),
so that w”(X) = —dlog(\). We have to check that the conditions (5.1) hold, i.e. that

Ker(6,) =T,L for all p € Z, where L is the symplectic leaf of II; through p.
0(X|z)=1.

lker(e) = — (Mzlker(e) -

x|, =0.

(5.6)

By Remark 4.2.11, we already know that the first and third condition in (5.6) are satisfied. In
Theorem 4.3.7, it is shown that ITfod = —dpoIl?, which implies that IT takes closed b-one-forms
to Poisson b-vector fields. Hence, X is Poisson and tangent to Z, which implies that X|; is
Poisson for I since (Z,11z) is a Poisson submanifold of (M, II). Restricting (5.5) to Z and
contracting with X|, gives

Lx|, 0 + x|, dlog(N)|z0 — dlog(A)|z6(X|z) = —dlog(})|z,

hence
Lx|, 0 + x|, dlog(N)| 20 = dlog(N)|z(0(X]2) — 1). (5.7)

Recall that at p € Z, we have the direct sum decomposition
"TEM =T Z & ((dlog(X)),)-

Since at each point p € Z, the left hand side of (5.7) lives in Ty Z and the right hand side lives
in ((dlog(A)),), both must be zero. Since dlog(A)|z is non-vanishing, we hence have

0(X[z) =1 and Lx|, &+ tx|,dlog(N)|z0 = 0.
Now

1x), d10g(N)]z = (d10g(N)]2, X|2) = (dlog(N)|z, TF(dlog(\))] )
— (dlog(N)|z, (I12)*(dlog(N)|2)) = Lz (dlog(A)|z, dlog(A)|z) = 0

by skew-symmetry. Hence
0(X|z)=1 and tx|,&=0.

This shows that X |z is transverse to the leaves of Z, and that the second and fourth condition
in (5.6) are satisfied. O
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5.2 Normal form

We now present a semilocal normal form for orientable log-symplectic structures, which is valid
on a neighborhood of the singular locus. The theorem appeared in [BOT, Section 4.1].

Theorem 5.2.1. Let II be a log-symplectic structure on an orientable manifold M?", with
singular locus Z # (). Let X be a modular vector field on M, for some choice of volume form.
We then have:

i) Iz := 11|z is a reqular corank-one Poisson structure on Z and Xz := X|z is a transverse
Poisson vector field. Moreover, there is a tubular neighborhood O C Z xR of Z, in which
Z corresponds tot = 0, such that

H’O :Xz/\taat—l-ﬂz. (58)

1i) Let (0 € QY Z) x Q2(Z) be the cosymplectic structure corresponding to (z, —X ).
) Let (6.1 ymp ponding :
Then the b-symplectic form w dual to II can be written as

dt
w|o:7/\9—|—77.

We already know that the first sentence of statement i) is true. Indeed, I is a corank-one
Poisson structure on Z by Corollary 3.2.3, and we know that X is a Poisson vector field that is
tangent to Z and transverse to the leaves inside Z by Proposition 4.2.15. The fact that X is a
Poisson vector field on (Z,I1) is merely a consequence of (Z,I1z) being a Poisson submanifold
of (M,II). Indeed, let i : Z < M denote the inclusion. Since II and X are tangent to Z, we have
that I and IT are i-related, and that Xz and X are i-related. By Lemma 8.3.2, also [ Xz, IIy]
and [X, 1] are i-related. In particular, [X,II] is tangent to Z. Since dpi : A*Tp,Z — A?T,M is
injective for all p € Z, there exists a unique bivector on Z that is i-related with [X,II]. Since
both [Xz,IIz] and [X,II]|z are i-related with [X,II], we must have that [Xz,1Iz] = [X, ]| .
Hence

£x,1z = [Xz,1z] = [X, [z = (£x1) [z = 0,

since X is a Poisson vector field on (M, II). We now start the actual proof of Theorem 5.2.1.
Proof. (of Theorem 5.2.1)

Step 1
We start by constructing a convenient tubular neighborhood U of Z.

Let 4 be a volume form on M, and let ¢ be its dual 2n-vector field. Since A2"TM is a
line bundle, we have I1" = ¢£ for some ¢t € C°°(M) that is a defining function for Z. Note
that

(", ) = (&, p) = (& 1) = ¢,

since p and & are duals. Since t vanishes linearly on Z, we have that ¢ is a submersion
along Z and that 0 is a regular value of t. Now let U C Z x R be a tubular neighborhood
of Z, where we choose some trivialization of the normal bundle NZ (note indeed that the
normal bundle of Z is trivial: M is orientable, and so is Z since it has a volume form
by Lemma 4.2.5). Let r : U — Z denote the projection map in the normal bundle. We
claim that the map (r,t) : U — Z x R is a local diffeomorphism around Z. To show this,
it suffices to check that its derivative is an isomorphism at points p € Z, by the inverse
function theorem.
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e We see that dp(r,t) = (dpr,dpt) is surjective, since r is a submersion and ¢ is a
submersion along Z.

e By the regular value theorem, we know that T,Z = T, (t~'(0)) = Ker(dpt). Hence
Ker (d,(r,t)) = Ker (d,r, dpt) = Ker(d,r) N Ker(dyt) = Ker(d,r) N T,Z.
Since dpr|1,z = IdT, 7, this shows that dy(r,t) is injective.

Shrinking U if necessary, we obtain that U C Z x R is the desired tubular neighborhood
of Z with global coordinate t in the fibers, such that Z corresponds to t = 0.1

Step 2

In this neighborhood U, we can write

0
Iy =Y N =
’U t at—i_wt’

with dt(Y;) = wf(dt) = 0. Since II is log-symplectic, we have that II is tangent to Z and
that IT™ vanishes linearly on Z. Therefore, necessarily Y; = tV; for some vector field V; on
U satisfying dt(V;) = 0. Hence

0
H’U:‘/t/\ta+wt

Denote by X the modular vector field corresponding to the volume form pu.
Claim: V; = X|y.
Choose f € C*°(U). We compute

H‘U(df, dt) = <Vt A t% + wt> (df, dt)

_ ‘df(Vt) df (t5)
dt(V;) dt (t5)
_ 'df(Vt) df (t5)
0 t
= tV,(f). (5.9)
On the other hand,
{f)t} = Xf(t) = "EXft = £Xf<Hn7:u’> = <‘£Xf]:[n7:u> + (1", £Xf:u>' (5.10)

Here, we note:

e Since Hamiltonian vector fields are Poisson, we have £x I = 0. Therefore also
£x,II" = 0 by induction, using that £x, is a derivation of the wedge product.

1To justify that U is as we want, we can argue as follows. For local coordinates (V,z1,...,%2n—1) o0 Z, we
want (r*(z1),...,7*(€2n—1),t) to be coordinates on r~*(V) C U. That is, we want
(r*(z1), ..., 7" (®2n-1),t) = (z107,...,T2p_1 01, 1)

to be a diffeomorphism into R*". This is the case, since it is a composition of the diffeomorphisms (r,t) and
(xl, e ,xzn_1,1d).
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Step 3

e By definition of the modular vector field X, we have
Lx,p=X(f)p=(Lxfp
Hence, putting together (5.9) and (5.10), we get

tVi(f) =y (df, dt) = {f,t} = 1", (£x f)p) = (£x )t = X ()L,

This implies that Vi(f) = X(f) on the locus (U \ Z) + {t # 0}, so that by continuity
Vi(f) = X(f) on all of U. This proves the claim that V; = X|¢y. In conclusion, we have

0
[y =Vint—
’U t at+wta

where wo :H‘Z:HZ and % :X’Z :Xz.

Since II7 is a corank-one Poisson bivector and Xz is a Poisson vector field transverse to
the leaves of Z, we get a bivector Iy on U defined by

0
o =Xz Ao + 1z,
which is seen to be log-symplectic by the same reasoning as in Example 3.2.6. (Note that
here we consider Xz and IIy as being defined on U by taking their horizontal lifts). The
log-symplectic structures II|y; and Iy define non-degenerate b-bivector fields, which can
be inverted. Let w = —H[&l and wg = —II; 1 denote the b-symplectic forms on U that are
inverse to Il|yy and Ilp, respectively.

Claim: w|Z = w0|Z.

We can decompose

dt
WOZT/\Q—'—ﬁv

where a € Q1(Z) and B € Q%(Z) are independent of ¢ (we write a and 3 for short instead
of r*(a) and r*(f), where r : U — Z is the projection). By Lemma 5.1.2, we have that
(a, B) is the cosymplectic structure corresponding with the pair

dt
(e (4

dt

z) = (Ilz,-Xz),

so that in fact

Next, we have the equality of b-bivector fields

0 0
le—‘/g/\ <t8t> Z+U)0—Xz/\ <t8t)

and since inverting is a pointwise operation, this implies that

+ 1l =1yl € T(N2(PTM)|y),
Z

A+ 1. (5.11)
Z

d
wlz =wolz = "

94



Step 4

By virtue of the equation (5.11), we can apply the local b-Moser theorem 4.2.7, which
gives a diffeomorphism ¢ : Oy — O1 between neighborhoods of Z such that ¢|z = Idz and
¢*w = wy. By functoriality, ¢ should push forward Iy to II: let us check this explicitly.
For vector fields X,Y we have

(¢*w) (X)(Y) = (¢*w) (X,Y) = w(du(X), :(Y)) = & (6:(X)) (¢u(Y))
= (w0 0.) (X)(0.(¥) = 6" (w0 6.) (X)) (V)
= (¢" 0w 00.) (X)),
so that (¢*w)’ = ¢* 0w’ o ¢,. Then we have for one-forms oy, ovy that

(6:T10) (a1, @2) = Thg(¢" a1, & axz) = (TTh(9"n). & a2 )

So indeed ¢,Ilyg = II. Now note that

6. (Tlo) = 6. (X2) A (#9

8t> + ¢:(Ilz)

— (6l2). (X2) 0. (137 ) + (6l2), (112

0
=X Nt— +11
VA 8t+ Z

where we use Lemma 5.3.5 in the last equality to see that ¢, preserves the normal b-vector
field. Hence, setting O := O; yields the conclusion i) of the theorem, namely

0
o = ¢uIlyg = Xz A ta +1Iz.

Taking inverses in this equality then also yields conclusion i) of the theorem:

dt
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Remark 5.2.2. We should stress that the expression (5.8) is very much subject to the choice of
volume form. Of course, the modular vector field X requires a choice of volume form, but also
the coordinate ¢ depends on the chosen volume form g, in a more disguised way, as t = (II", u).

5.3 Extensions

Up until now, we always started from a given log-symplectic structure (M, Z, IT) and investigated
the local picture near the singular locus Z. In particular, we saw that II induces a corank-one
Poisson structure on Z. Conversely, we can ask: given a b-manifold (M, Z) with a corank-one
Poisson structure Il on Z, is I1z induced by a log-symplectic structure on M? And if so, to
what extent are such log-symplectic extensions of Il unique?

5.3.1 Existence of extensions

We give necessary and sufficient conditions for a corank-one Poisson structure Iz on Z to be
induced by a log-symplectic structure on a tubular neighborhood of Z. We will restrict ourselves
to orientable manifolds. This theorem is a combination of [GMP2, Theorem 50] and [GMP1,
Proposition 18].

Theorem 5.3.1. Let (M?",Z) be a b-manifold, with M and Z orientable, and let Iz be a
corank-one Poisson structure on Z. The following are equivalent:

i) There exist a tubular neighborhood U of Z and a log-symplectic structure I1 on U that
induces Il 5.

it) There exists a Poisson vector field on Z that is transverse to the symplectic leaves.

i11) The foliation of Z has a closed defining one-form and a closed two-form that pulls back
to the symplectic form on each leaf.

Proof. We will prove that i) = ii) = iii) = ).

e First assume that there exist a tubular neighborhood U C M of Z and a log-symplectic
structure II on U inducing IIz. Since M is orientable, we can choose a volume form
@ on U and consider the modular vector field X associated with p and II. Then X is
a Poisson vector field on U (see Theorem 2.9.5) that is tangent to Z and transverse to
the symplectic leaves of Z (see Proposition 4.2.15). Restricting X to Z gives the desired
transverse Poisson vector field on (Z,11z).

e Let Xz be a Poisson vector field for (Z,11;) that is transverse to the symplectic leaves.
The pair (IIz, Xz) determines a cosymplectic structure (a,w) € Q1(Z) x Q%(Z) on Z by
Theorem 5.1.1. Then « is a closed defining one-form for the foliation of Z, and w is a
closed two-form that pulls back to the symplectic form on each leaf, as is clear from (5.1).

e Assume that a € Q!(Z) is a closed defining one-form for the foliation on Z, and that
w € Q2(Z) is a closed two-form that pulls back to the symplectic form on each leaf.
Then « is nowhere vanishing, and w|ker(o) is non-degenerate, which by (4.17) implies that
a A w" ! is nowhere vanishing. Let U C NZ be a tubular neighborhood of Z in the
normal bundle NZ, and let p : U — Z be the projection. By orientability of M and Z,
the normal bundle NZ is trivial; let ¢ be a global coordinate in the fibers. We define a
b-form w € *Q2(U) by

w=p"(w)+ — Ap*(a). (5.12)

96



We claim that w is a b-symplectic form. Clearly, w is closed since

05 = d(p* (@) + 5 A d(p* (@) = p*(d) + & A p(da) = 0,

using that a and w are closed. To show that w is non-degenerate, we have to check that

- dt _
7" =% A () A (7 ()"
is a nowhere vanishing b-form. Assume by contradiction that wy = 0 for some ¢ € U.

Then in particular,

0=(1,25") = [P@ A @) =P @ne),.
and this implies that (a A w"‘l)p(q)
we run into a contradiction, and we conclude that @ is a b-symplectic form on U. Let
I1 € T(A?2TU) be its dual log-symplectic structure. In Remark 4.2.11, we showed that the
symplectic foliation on Z determined by the pair (o, w) is exactly the symplectic foliation
induced by II|z € T'(A2TZ). That is, we have corank-one Poisson structures Iz and 1|z
on Z inducing the same symplectic foliation of Z. By Proposition 2.12.17, they must
coincide: Iz = II|z. Hence IIz is induced by the log-symplectic structure IT on U, which
finishes the proof.

= 0 since dgp : T;U — T, Z is surjective. So

O]

Remark 5.3.2. If we are only given the data (Z,11;), then we can thicken Z to M := Z x(—¢,¢€)
and construct a log-symplectic structure on M inducing I17 as in the last point of above proof,
provided that the conditions of Theorem 5.3.1 are satisfied.

Example 5.3.3 (|[GMP2]). Let Z = S? and I any corank-one Poisson structure on Z. Assume
that the induced symplectic foliation on Z would have a closed defining one-form o € Q1(2).
Since H'(Z) = 0, necessarily « is exact: a = df for some f € C*°(Z). Since Z is compact, the
function f reaches maximum and minimum values, so that df has zeros on Z. Hence « does
vanish at some points, and therefore it cannot define a corank-one foliation. By contradiction,
we conclude that S cannot be the singular hypersurface of a log-symplectic manifold.

Example 5.3.4 ([GMP2]). Consider Z = T? with coordinates 61,02, 0s. Let a,b € R be fixed
constants. The map
f : TS —R: (91,92,93) — 93 — a91 — b92

is a submersion, and therefore it gives rise to a codimension-one foliation F on T? whose leaves
are the different f-fibers

fﬁl(k}) = {(01, 92,03) 103 = abi + by + k}, ke Im(f) C R.
The foliation F is defined by the one-form a € Q!(T?), given by

a b 1

= ———db df, — dofs.
R Sy L LA Ry DR Lo C Ry R R

Indeed, clearly « is non-vanishing, and for any leaf L = f~!(k) we have

a

= do
ZrEr1t

B2

1
3 - d(af b6 k
i} PR a2+b2—|—1(a1+ 2+ k)
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a b

b
o dfy — do, —
S SR s R iy B L By SR |

dbs

N a
Ca?+ b +1
:0,

where i;, : L < T3 is the inclusion. We will now construct a Poisson structure II; on Z
which induces the foliation F, and which endows each leaf L with a symplectic form that is the
pullback to L of

w = dfy A dby + bdby N dBs — adbs N dbs.

Note that

izw = db, N dby + bdby N (ad91 + bd@g) — adfy N\ (ad01 + bd@g)
= (14 a® +b?)dh; A dbs.

Hence necessarily

N1 1 o 0
z|, = —(iLw) = <1+a2+bz>agl/\392

Since (L, IIz|; ) has to be a Poisson submanifold of (Z,1Iz), we must have

1
(z), (dpbr; dpb) = (Lzlp), (dpbr, dpbo) = 155,
b
(z), (dpbr; dpbs) = (Lzlp), (dpbr; adpby +bdpa) = 155,
a
(z), (dpba; dpbs) = (LzlL), (dpba; adpby +bdpz) = =355,

where L is the leaf through p. This shows that we should define

myo-(—+ Yo, (_ b o o0 ( a O 0
2 \1+a+02) 00, " 90,  \1+a2+02) 90, 905 \1+a2+b2) 80, 965
One easily sees that II is Poisson, i.e. that [IIz,IIz] = 0. Indeed, since the coefficients of
I1; are constant, the derivation property of [-,-] with respect to the wedge product reduces

[I1z,1I1z] to Lie brackets of coordinate vector fields, which are all zero. It remains to check that
II; indeed induces the foliation F. We have

Im(HﬁZ)p = span { (Hﬁz> (dpb1), (H%) (dpb2), <Hﬁz) (dp93)}
P p p

(1 No| (b o

P T e 96,), " \T a2 12 00,

IR N
1+a2+02) 96,

’
p

I
» 14+a%2+02) 005

)
p

(b NO (e ) O
1+a2+ b2 691p 1+a2+ b2 802p
Cgpand 2| 4 0 o) L 0 00 9
- 96|, " 05|, d6:|, " “ 065,07 961|965,
_gpand 2| 4 0 2} L9
~ P 96|, 965 |, d61|, " 05, [
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where the last equality holds since

_b<8 )_a<a )
p 96, p p 96, p p

On the other hand, if L = f~1(k) is the leaf of F through p, then the preimage theorem gives

A
T

T,L = Ker(dy ).

where af af af
o = (L) 52 (0 ) = (.. 1)
Hence
T,L = {(x,y,2) € R3: —az — by + z = 0}
= {(z,y,az +by) : z,y € R}
= span{(l, 0, a), (0, 1, b)}7
so that

9
063

o
, 061

0
+a =

905 } = Im(HﬁZ)p-

In conclusion, we have a corank-one Poisson structure IIz on Z, whose symplectic foliation
has a closed defining one-form « and a closed two-form w that pulls back to the symplectic
form on each leaf. Hence, thickening Z to M := Z x (—e,€), we have that IIz is induced by a
log-symplectic structure on M. As in the proof of Theorem 5.3.1, a b-symplectic form on M
inducing Iz is

0
TpL = Span { 8792

p p p

o, at
5 =p" W)+ AP()

where ¢ is the coordinate on (—e,€) and p: Z x (—¢,€) — Z is the projection. So we can take

dt a b 1
w = df; \dO3+bdh NdO3—adBs NdO3+— N do dfy — ———5——dbs | .
W = AR NG FRAO NGy madB NaOs <a2+b2+1 A T B LR B 3)
Inverting w then gives a log-symplectic structure I on M inducing II;. We compute
a -1 1 b
0 1 b a2+l 0 210241 airbrt1 ¢
-1 0 —a —Wgzﬂ R S 0 ——t— =b
_ T — a +II; +1 a’+b%+1 ,
—b a 0 a24b2+1 _a2+b2+1 a2+g2+1 0 1
v b~ ok 0 b 1 0
A2+b2 1 a4b2+1 aZ+b%+1 a -

hence

0= (1>‘9A5+<b>8A5_Q8A<ta)
a?2+b+1 00 005 a2 +b%+1 001 005 00 ot
ot ) (1) 0 ()
a?+0b24+1) 00, 003 064 ot 003 ot
(D)o D) o () e () o
ot 00 005 005 14+ a2+ b2 00 005 1+a2+0b2 001 005
_ <a> 9 .9
1+ a? + b2 802 893

_ tg A i+bi_i +H
—\'or 90, T 00, 064 z
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5.3.2 Equivalence of extensions

Having determined when a corank-one Poisson structure Iz allows a log-symplectic extension,
we now want to know to what extent such a log-symplectic extension is unique. We will see
that, up to a certain notion of equivalence, the log-symplectic extensions of 11z, defined in some
tubular neighborhood of Z, are parameterized by the cohomology classes in Hlsz(Z ) of Poisson
vector fields transverse to the symplectic leaves.

The material we discuss in this subsection is addressed in [GMP2], but the exposition given
there is flawed. Below, we improve on the work done in [GMP2]. As such, while the results in
this subsection are not all original, some of the proofs are.

Construction of the correspondence

Let (M, Z) be a b-manifold. We will assume throughout that both M and Z are orientable, so
that Z has a defining function that exists on a tubular neighborhood of Z (see Lemma 4.1.2).
Recall that we have a canonical short exact sequence of vector bundles

0Ly <sTM|, %177 >0, (5.13)

where p|z is the restriction to Z of the anchor map p : °TM — TM and Ly is its kernel. We
have seen that Lz is a trivial line bundle, with canonical non-vanishing section £&. This section
can be described as £ = fv|z where f is any defining function for Z and v is a vector field with
df(v) =1 (see Remark 4.1.12).

Lemma 5.3.5. Let (M,Z) be a b-manifold with M and Z orientable, and let ¢ : M — M
be a diffeomorphism such that p|z = Idy. Then the b-derivative® o,|z : *TM|; — *TM|y
commutes with the maps in (5.13), i.e. we have a commutative diagram

"TM|z

/ plz

Lz il TZ

\ plz

bT M|,

Proof. By definition of the map p,, we have a commutative diagram

b
by P b

Jp l , (5.14)

™ — 2 s TM

where p : °TM — TM is the anchor map. Over Z, we have

¢xlz 0 plz = (¥lz),0plz = plz,

2We introduced the b-derivative in previous chapter. There we used the notation ®dip, but for consistency
with our notation for the usual derivative ., we will from now on denote the b-derivative by ®¢..
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where the first equality holds since Im(p|z) is tangent to Z, and the second equality is true
since |z = Idz. Hence by commutativity of (5.14), we get

IO‘Z © b‘p*|Z = 90*|Z O,0|Z = ,0|Z.
Next, let f be a defining function for Z and v a vector field such that df(v) = 1. Then

bou(fv) = (fop™) g,

1

where f o™ is again a defining function for Z, and

d(f o™ !)(psv) = df(v) = 1.

Hence %y, |7 takes the canonical non-vanishing section of Ly to itself, which shows that %y, |7
is the identity on L. O

Example 5.3.6. Let (M, Z) = ((—1,1) x R, {y = 0}) and consider the sheer transformation
o:M—M: (z,y) — (x,y(1 + x)).

Then ¢ is the identity map on Z, and ¢ is a diffeomorphism since its Jacobian determinant is

=1+u, (5.15)

1 0
y l+=x

which is nowhere vanishing as z € (—1,1). For the b-derivative e, : °TM — *T'M, we observe

that
P \oz) =P \oz) ™ oz yay’

where the last equality holds by considering the first column in the matrix (5.15). Similarly,

B - B y B B
b P — = 1 P — = _— = Yy—
Px (yay) (yo™) s (8y> <1+x) (1+ﬂf)ay Y,

Restricting to Z, these results are in perfect agreement with Lemma 5.3.5.

The dual of the short exact sequence (5.13) is

072 % v epr, Sy — 0. (5.16)

The bundle L7, is also trivial, and a trivialization is the dual section £* of £. A splitting of the
sequence (5.16) is given by the map
daf

1/1:L}—>bT*M]Z:§*»—>7

Z

Indeed,

since




Basic commutative algebra says that there exists a (unique) map ¢ : °T* M|z — T*Z such that3
poply;=1d and p|zod+1poi* =1d.

We then have
bovoi" =go(ld—plyod)=d—¢=0,

and since ¢* is surjective, this implies that ¢ ot = 0. Dualizing (5.16) again gives a split exact
sequence

i plz
0Ly ="TM|, = TZ 0, (5.17)
v o

where * 0 ¢* = (¢ 0 1p)* = 0. We have Im(¢*) C Ker (%‘Z) since

<¢*<w>, 9

which implies Im(¢*) = Ker <% )Z> by counting dimensions. In conclusion, we have the decom-

Z> = (67 (), B(E)) = (4" (8" (w)), € = O,

position
d
MTM] = (") @ Im(i) = Ker <]{ ) &Ly (5.18)
z
and isomorphisms
d d
¢*:TZ—>Ker(f ) and p]Z:Ker<f )—>TZ (5.19)
f Z f A

that are inverse to each other.

Now let w € T'(A2(*T*M)) be a b-symplectic form on (M?", Z) and denote by A € T'(A2(*TM))
the inverse b-bivector field. The anchor p : °TM — TM maps A to a log-symplectic structure
II € T(A?TM). We denote by Il the corank-one Poisson structure that is the restriction of II
to Z. Fix a defining function f for Z. By (5.18), we have

)oie]
z

/\Z(bTM|Z) = A?Ker (df ) @ [Ker (df
7 f
A|Z :X/\g§+AK

f
= (gX)NE+ Ak
:—Lg) Alz NE+ A,
flz

and therefore we can write

where ¢ is the canonical non-vanishing section of Lz, g € C>*(Z),X € T’ (Ker (%‘Z>> and
Ag el (/\QKer (%‘2» Moreover, we have:
i) Under the isomorphism A?TZ =2 A?Ker %‘Z) arising from (5.19), we have that Ax
corresponds with 1. Indeed, if A = ¢*(w) for w € T(A2TZ) then
Iz = plz(Alz) = plz(Ak) = plz(¢"(w)) = w,

using that £ € I'(Ker(p|z)) in the second equality. Hence indeed ¢*(Ilz) = Ak.

3This is a general fact about short exact sequences in an additive category. We work in the additive category
of vector bundles over Z, with as morphisms the bundle maps covering Idz.
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ii)

The b-vector field —¢ df‘ Az el (Ker (%‘Z>> corresponds under the isomorphism p|z
Tz

(5.19) to a vector field on Z, which we call v/:

vl = pl, <—Ldf‘ A]Z> . (5.20)
flz

Hence, for a fixed defining function f, we have that A|; is completely determined by the bivector
field I and the vector field v/ as

Az =v/ Ae+T15.

Remark 5.3.7. We make some remarks concerning the above observations.

i)

i)

Since df /f is a closed element of ®Q'(M), we have that p <—Ldf A> is a Poisson vector
f

field (see the proof of Theorem 4.3.7). Its restriction to Z, which we denote by v/, is then
a Poisson vector field on Z since (Z,11yz) is a Poisson submanifold of (M, II). Moreover,
vl is transverse to the symplectic leaves of (Z,1Iz). Indeed, under the isomorphism

TZ = Ker (%‘ ), we write
z
Alz = v/ AE+T1g,
and since II is log-symplectic, we know that IIz has rank 2n — 2. Since A € T'(A2(°TM))
is non-degenerate, we have that

Al =nof AEATIET!

is non-vanishing. In particular, v/ /\H’%_1 is non-vanishing, which implies that v/ is trans-
verse to the leaves of (Z,11z). This can be seen as follows. Choose splitting coordinates
(1,Y1s- s Tn—1,Yn—1,t) on Z, such that

n—1
0 0
II; = ; oz, A 8%

The expression of v/ in the coordinates (x1,¥1,. .., Zn_1,Yn_1,t) has to involve 9/dt, since
vl A H%‘l is non-vanishing. As the leaves of II; integrate the distribution

spand 2 O 0 9
p ax178y17"‘78xn_178yn_1 )

it follows that v/ is transverse to the leaves of II.

Changing defining function will change v/ by a Hamiltonian vector field. Indeed, any
other defining function is of the form g f for some function g that is non-vanishing. Now

note that
d(fg)| _df| dg| _df
z [

fg z 9lz f

Recall that we consider usual de Rham forms as b-forms by pulling them back under the
anchor map p. With this in mind, (5.21) gives that

+ dlog(|gl)|z- (5.21)
Z

iy Alz = | Alz = tpr(drog(g)) 2 A 2,
fg VA f A
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whence
v’ = vl = plz (45 (@roxiah1- Al2) -
Now using that
Lo (dlog(lg))| 2§ =0 since Ty Z = (&))" at p € Z

along with the fact that p|z(£) = 0, we have

plz (tp(aro(gl)) 12 2) = plz (tp- (108112 A &)
= Ldlog(|g))| 2 P(AK)
= tdlog(|g))| 2 (112)
= 11}, (dlog(lg])| 2) .

Hence, we conclude
Ham(IIz)

fa _ f _
ve=v log(lgl)| z *

In the following, we denote by [v] € Hrllz (Z) the Poisson cohomology class [vf], for any
choice of f.

iii) Replacing the b-symplectic form w by ¢*w, where ¢ : M — M is a diffeomorphism such
that ¢|z = Idz, the vector field v/ also changes by a Hamiltonian vector field. Indeed,
noting that ¢*(f) is also a defining function for Z, we have

vjflfA) = plz <—L et | (p:'A) |Z>
; |y

(), )

where the third equality holds by functoriality, and we used Lemma 5.3.5 in the fourth

equality. By ii) we know that Uf:i(lfA) and vi — differ by a Hamiltonian vector field, which

then shows that Uf\ and vi 1) differ by a Hamiltonian vector field.

By the above remark, we obtain:

Proposition 5.3.8. Let w be a b-symplectic form on (M, Z), where M is orientable* and Iy
1s the induced corank-one Poisson structure on Z.

i) Canonically associated to w, there is a class in the Poisson cohomology [v] € H}IZ(Z), for
which one (hence any) representative is transverse to the symplectic leaves of Z.

it) If two b-symplectic structures inducing Iz are related by a diffeomorphism which is the
identity on Z, then the associated cohomology classes agree. In other words, for each
corank-one Poisson structure Il on Z that arises from a b-symplectic form, the map

“Orientability of Z is automatic by Lemma 4.2.5
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{b — symplectic forms on (M, Z) inducing 7}/ ~
— {elements of HﬁZ(Z) transverse to the leaves} :
(class of w) +— [v] (5.22)

is well-defined and canonical. Here ~ is the equivalence relation by diffeomorphisms that
are the identity on Z.

The assignment (5.22) can be described alternatively in terms of modular vector fields.

Proposition 5.3.9. Let w be a b-symplectic form on (M*",Z), where M is orientable. Let
A € T(A2(°TM)) be the b-bivector field inverse to w, and let II be the log-symplectic structure
on M obtained by applying the anchor map p : °TM — TM to A. Let f : V — R be any
defining function for Z, defined on a tubular neighborhood V of Z. Then there exists a volume
form Q on 'V such the vector field vl is the modular vector field X3, restricted to Z.

Proof. Since II" vanishes exactly on Z and vanishes linearly there, we have that y := (1/f)II"
is a nowhere vanishing 2n-vector field on V. Setting € to be its dual 2n-form (i.e. (x,Q) = 1),
we get that €2 is a volume form on V satisfying (II", Q) = f. The proof of Theorem 5.2.1 shows
that we may use f as a global coordinate in the fibers of a tubular neighborhood U of Z, and
we can decompose

0
A|U :Xf%\ZAfa—ijHZ. (5.23)
Using that TZ = Ker (%‘2) under the anchor map p, we therefore obtain
f Q 9 Q
v :_L'Lf’ XH‘Z/\faf-i-HZ = Xiilz.
7z f

O]

We showed in Proposition 2.9.6 that if {2 is a volume form and A a non-vanishing function,
then
Q Q
XII}I = XH - X10g|h\’

Therefore the assignment (5.22) in Proposition 5.3.8 can be described as follows: to the b-
symplectic form w we associate [X%‘ 4 € Hrllz (Z), where II is the log-symplectic structure
corresponding with w, and € is any volume form on M.

Bijectivity of the correspondence

Restricting to a tubular neighborhood of Z, the assigment (5.22) becomes a bijection. Injectivity
is shown by the theorem below, which appeared in [GMP2, Theorem 35]. However, the proof
given there is sloppy regarding the volume forms used, and moreover it contains a gap in a
crucial place. See Remark 5.3.12 below. We present a more elaborate argument that rectifies
these problems.

Theorem 5.3.10. Let wy and wy be b-symplectic forms on (M*", Z), where M is orientable.
Let Tlp,II; € T(A2TM) be the corresponding log-symplectic structures. Assume that we have
Ho|lz =z := Uy € A2(TZ), and suppose moreover that

Ham(Ilz)

XIS_I)1|Z:X1%20|Z+X]" ’
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where ) is some volume form on M and X

Ham(llz) ¢ X(Z) is the Hamiltonian vector field for

Iz associated with the function f € C°°(Z). Then there exist neighborhoods Oy, O1 of Z in M
and a diffeomorphism v : Oy — Oy such that v|z = Idy and y*w; = wyp.

Proof.

Step 1

Step 2

Let g be an extension of the function f, defined in some neighborhood E of Z. Consider
the volume form ' := e 9Q on E. We then have on E:
Q' v Ham(Ilp) _ +Q Ham(IIp)

XHO - XHO o Xlog(e*H; - XHO - X*g ’

Using that (Z,1Iz) is a Poisson submanifold of (M, Ily), we have

— Xf, + xHHun(llo),

Xm0, = (W(dg) )|, = 05 (d(o]2)) = T (dr) = X0

Hence

H 11 /
X3z = X8|z + X202 = x| 5. (5.24)

Using the Moser trick for volume forms, we will now find a diffeomorphism ¢ : Vo — Vi,
where Vp, V; are open neighborhoods of Z, such that ¢*Q' = Q and 9|z = Id.

Put Q9 = Q and Q; = Q. Consider the straight line homotopy
Q= Qo +t(Q — Qo) 0<t<1.
We claim that € is a volume form for each ¢ € [0,1]. Note that
Q=Q+t(e90-Q)=(1+te?-1))Q,

where 1 + t(e79 — 1) is nowhere vanishing for all ¢ € [0, 1]. Indeed, for ¢ = 0 it is clearly
non-vanishing, whereas for ¢t # 0 we have

1+t(e 9P —1) =0 e 9P = _71 +1<0.

Here the last inequality holds since 0 < t < 1. So we would have that e9() < 0, which is
impossible. We now have a path of volume forms 2; on E. Note that 1 — Qq is closed,
being a differential form of top degree. Moreover, its pullback to Z vanishes, being a
2n-form on a 2n — 1-dimensional manifold. Hence the Relative Poincaré Lemma applies
(see Proposition 1.3.9), which tells us that there exists v € Q?*"~!(E) such that

Qlfﬂozdlj

and v|z = 0. To find the desired diffeomorphism 1), it now suffices to solve the Moser
equation

tx, S = —v (0<t<1)
for Xy, which is possible by Lemma 5.3.11 below. Note that X;|z = 0 for each ¢ € [0, 1],
because v|z = 0. We now integrate {Xi},c[0,1) to an isotopy {pt}e[o,1], and application of
the Tube Lemma, as in the Local Moser Theorem 1.3.14 ensures the existence of an open
neighborhood V C E of Z such that

p:[0,1]xV = E,

i.e. p; is defined on V for each ¢t € [0, 1]. Note that p;|z = Idz since X;|z = 0. Putting
v = p1, Vo =V and Vi = p1(V), we obtain the desired diffeomorphism ¢ : Vj — V;
satisfying

1/1*9/ =Q and IMZ = Idz.
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Step 3

Step 4

Using that *Q' = 2, as obtained in the previous step, we have
. w*Q/

z X ) z (%—1 (X?;El))‘z - (w*_l (Xl%l’))’z
= (v7'2), (X8 Z) = Xii,|, = Xt (5.25)

Q
X2 (prwg) -1

The second equality holds by functoriality, the last equality is (5.24) and we used in addi-
tion that Xl%; is tangent to Z at point of Z. Now consider the log-symplectic structures

ﬁa := —(¢*wp)~! and Iy, defined on a neighborhood of Z. Since 1, (ﬁg) = Iy, we have

s = = (v ()], = 0. (7]) = ] 22

and the modular vector fields of ﬁa and II; with respect to €2 coincide on Z.

By Theorem 5.2.1, there exists a tubular neighborhood U C Z x R of Z on which

N o
H‘ :XQ‘ Ato— 4TI
Olu Holz 08t0+ olz

o)
My = Xit, |, MlaTl + 1|z, (5.26)

where tg = (lTon, Q) and t; = (II7, Q) are defining functions for Z. Considering I, and
1} as nowhere vanishing sections of the line bundle A?*(*T'M), there exists a nowhere
vanishing function f € C*°(U) with ﬁvon = fII?. This implies that tyg = ft1. Using ¢y as
defining function for Z, we can decompose the b-symplectic forms wy and w; dual to f[vo
and II; as

— dty
wolu = ap + T Ap* (o)
dty
wily = a1+ —— Ap"(6h),
to
where p: U — Z is the projection.

Claim: wy|z = wi1|z.

By Lemma 5.1.2, we know that (6p, ap) is the cosymplectic structure corresponding to
(ﬁ;‘z , ﬁati (%) ‘Z>, and (01, aq) corresponds to (H1|Z , Hji (%) ‘Z> Since

dto df dty

to f ot

we have, using (5.26) and the fact that the modular vector fields XﬁQv ‘Z and Xgl ’Z as
0

)

well as I'T()]Z and II; |z are tangent to Z:

i a)’ b <df’ ( ;
— x| Yoy 2| - - x Yz
2 H1|Z to (1at1 2 H1‘Z f p 18t1
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Note here that df /f is an honest de Rham form since f is non-vanishing. Hence at points
of Z, it annihilates the normal b-vector field t10/0t;. So

dt —~t [ dt
(%) (e

to Z to
Hence (ﬁa‘z , ﬁaﬁ <%) ‘Z> = (H1|Z , H’i (‘%) ‘Z), which implies that (6p, ag) = (01, 7).
We conclude that

v __ yvQ
= X, =— X%

Z

_ dt
Al =a; + —2
A to

__ _—_ dty
wolz = a0+ —
to

A 6 IW1|Z.

Z

Step 5
The Local b-Moser Theorem 4.2.7 gives open neighborhoods Oy and O; of Z and a diffeo-
morphism ¢ : Op — O such that ¢|z = Idz and ¢*wy = wi. Since wy = P*wy, it follows
that
¢* (Y wo) = (Y 0 ) wo = wi,
where Yo : OgNo~ (V) — ¥(01) NV is a diffeomorphism between open neighborhoods
of Z, satisfying (¢ o ¢)|z = Idz. This finishes the proof.

O]

Lemma 5.3.11. If V is a real vectorspace of dimension n and pu € \"V* is nonzero, then the
linear map
V= AW u e

s an tsomorphism.

Proof. 1t is enough to show injectivity, since

n—1

dim (A"7'V*) = ( > =n = dim(V).
Suppose ¢, = 0 and assume by contradiction that v # 0. We extend {v} to a basis {v,va, ..., v, }
of V' and obtain that

(v, v, .. 0n) = (Lop) (v, ..., vn) = 0.
So u evaluates a basis of V' to zero, which implies that u = 0. This contradicts the assumption
of the lemma. O

Remark 5.3.12. In [GMP2, Theorem 35], one claims that the assumptions of Theorem 5.3.10
imply that wg|z = w1|z. This is not true: we give a concrete counterexample below, which is a
slight adaptation of [GMP2, Example 18]. So the proof of Theorem 5.3.10 is more subtle than
suggested in [GMP2, Theorem 35|. The crucial ingredient missing there is the Moser argument
for volume forms that we use in Step 2 of our proof. It results in a diffeomorphism 1 defined
near Z so that

(Y wo) |z = wilz,

and at this stage we can safely use the local b-Moser theorem. This was not possible from the
outset, since wp|z # wi|z in general.

As a counterexample to the claim in [GMP2, Theorem 35], we consider S? x (S! x R), with
cylindrical coordinates (6, k) on S? and (61, z) on S* x R. Consider the log-symplectic structures

H_pd (0 0N, 0 o
Oh g0 06, 00, 0z’
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o 0 0 0
Il = h%/\%+376?1/\%'

On their common singular locus Z <+ {h = 0}, they both induce the Poisson structure

0 0

m, =2 A2
2= 59, 92

N\ -1
The b-symplectic forms w := —II"! and @ := — (H) are given by

d—}?/\dﬁ—l—dz/\d@—i-d&/\dz

&z%/\d@—i—d&l/\dz.

We take the volume form 2 := df; A dz A dh A df. By Lemma 4.2.14, we then know that

We now compute Xg. For any smooth function f, we have

of 0 ofo of o of o of o of o
X,=pLd 9 99 o9rg 959
r=ronas " "ogan T"anoe, ~"oe on T a0 9: 0200,

using Lemma 2.7.4. We then note that

of of
£x,d0y = d (£x,01) = d(d61(Xy)) =d (hah - az> ,
£dez:d(£xf)—d dz(Xy)) <891>
£x,dh = d (£x,h) = d(dh(Xf)) 301>
£x,d6 = d (£x,6) = d(d6(X) ( )
Therefore,
[, 0f of of
£XfQ_d<hah az>/\dz/\dh/\d6+d91/\d<891)/\dh/\d@
8f of 8f
+d91/\dz/\d< % h891>/\d9+d91/\dz/\dh/\d< 8h>
_ h82f_82f O*f _g_hav_g_ O*f +h82f O
“\"00,0n 00,0z ' 0200, 00 OO0 06, ' OhOO;  0OOh
([ of of
—< o7 %)Q’
so that 9 9
o__9 o
X = o0 90,
We note that 9
o _ yo| __ 9 _
xg|, XH’Z 3r = T (d2)

is a Hamiltonian vector field for 11z, but nonetheless

6|Z #w‘z.
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We can now prove our main statement, which refines [GMP2, Theorem 50].

Theorem 5.3.13. Let (M,Z) be a b-manifold with M orientable, and assume that Iz is a
corank-one Poisson structure on Z that is induced by a b-symplectic structure. Then the assign-
ment

{b — symplectic forms defined on a tubular neighborhood of Z inducing Il1z}/ ~

— {elements of Hyj,(Z) transverse to the leaves} :
(class of w) — [v] (5.27)

1s bijective. Here ~ is the equivalence relation by diffeomorphisms defined in a neighborhood of
Z that are the identity on Z.

Proof. Injectivity of (5.27) is proved in Theorem 5.3.10. Surjectivity is readily checked as
follows. By orientability of Z and M, the normal bundle NZ is trivial, so we can choose
a tubular neighborhood U = Z x (—1,1), with coordinate ¢ on the interval. Now if v is a
transverse Poisson vector field on (Z,11z), then

0
II:=vAt—+1I 5.28
vAte +1z (5.28)
is a log-symplectic structure on U with singular locus Z, inducing IIz on Z. Moreover, the
vector field vf; as defined in (5.20) is equal to v, which proves surjectivity. O

We finish this chapter by working out an example on Theorems 5.3.1 and 5.3.13.

Example 5.3.14. Consider the b-manifold (M, Z) = (R? {y = 0}). We start with the zero
Poisson structure IIz = 0 on Z (which is the only Poisson structure on Z).

e Does Iz = 0 come from a log-symplectic structure? By Theorem 5.3.1, we have to check
if there exists a Poisson vector field on Z transverse to the leaves of Z. Since any vector
field on Z is Poisson and the leaves of Z are its points, a transverse Poisson vector field
is the same thing as a nowhere vanishing vector field. For sure, such a vector field exists
on Z and therefore IIz; = 0 is induced by a log-symplectic structure.

e The elements of H}IZ(Z ) = X(Z) that are transverse to the symplectic leaves of Z are
given by

{g(:z:)ai :geC™(Z) non—vanishing} .

To each of these vector fields corresponds a class of b-symplectic structures inducing Iz, by
Theorem 5.3.13. Note that (5.28) shows us how to find the class of b-symplectic structures
corresponding with g € C°°(Z), namely we take the equivalence class of

AN d
Wy 1= — (g(m)ax A yc’)y) =g Y(x)dz A Zy e "% (M).

Let us double-check that, if g and ¢’ are different non-vanishing functions on Z, then the
corresponding b-symplectic forms wy and wy are indeed not related by a diffeomorphism
p: M — M with p|z = 1dgz. If p is such a diffeomorphism, then Lemma 5.3.5 implies that

iz((v3)].) = (72)
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and

Z) = (s + oy )

o
b 9
p»«lz(9

for some function h € C°°(Z). We then have for w € *Q?(M):

), () e ()L
=wlz ( (;; + W)y%) . <yaay> Z>
“ie (L)

where the last equality holds by skew-symmetry of w. Hence (p*w) |z = w|z. This shows
that for g # ¢/, the b-symplectic forms w, and wy are not related by such a diffeomorphism
p: if this were the case, then wy and wy would have the same restriction to Z, which they
don’t.

)
Z

ol (5

e So we conclude that there are as many pairwise inequivalent log-symplectic extensions of
Iz = 0 as there are non-vanishing functions on the real line. So the set of equivalence
classes of log-symplectic extensions of II; corresponds to an open subset of the infinite
dimensional real vector space C*°(R).
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Chapter 6

Foliation invariants

This chapter aims to give a characterization of a certain class of compact corank-one Poisson
manifolds, namely those equipped with a closed one-form defining the symplectic foliation and
a closed two-form extending the symplectic form on each leaf.

To do so, we will define two foliation invariants, the vanishing of which is equivalent with
the existence of such a closed defining one- and two-form. We then show that a foliation with
vanishing invariants on a compact manifold M is defined by a fibration over S', and we will
characterize the manifold M as a mapping torus.

The symplectic foliation on the singular locus of a log-symplectic structure always has van-
ishing invariants, so that the aforementioned results apply in particular to the singular loci of
log-symplectic structures, provided they are compact. This chapter follows [GMP1].

6.1 Introducing two foliation invariants

6.1.1 The first obstruction class

Throughout, we will be dealing with regular codimension-one foliations. Let us briefly recall
what a regular foliation is.

Definition 6.1.1. A regular foliation F of dimension k& on a manifold M™ is a decomposition
of M into connected immersed submanifolds {L,}.c4 of dimension k, called the leaves of the
foliation, with the following local property: every point in M has a neighborhood U with
coordinates (z1,...,2,) such for each leaf L,, the connected components of U N L, are given
by the equations

Tk4+1 = constant

T, = constant
Such charts (U, x1,...,x,) are called foliated charts. The codimension of F is n — k.

So a regularly foliated manifold M is locally modelled as an affine space decomposed into
parallel affine subspaces.

Definition 6.1.2. Let F be a regular foliation on M. The union of the tangent spaces T},L for
p € M, where L is the leaf through p, forms a subbundle TF C T'M. The normal bundle of the
foliation is the quotient bundle TM /T F. The conormal bundle is its dual bundle (T'M/TF)*,
which is identified with the annihilator

Am(TF) ={aeTy,M:pe M, a(v)=0 Yv e T,L}.
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Figure 6.1: A regular 1-dimensional foliation. Figure taken from [Mil]

Definition 6.1.3. A foliation F on M is called transversely orientable! if the normal bundle
TM/TF is orientable.

Intuitively, a transversely orientable foliation F is a foliation that allows one to distinguish
between “above the leaf” and “below the leaf”. In case F is a codimension-one foliation, we
have the following equivalences:

F is transversely orientable < T'M/TF is orientable
< (TM/TF)* has a nowhere vanishing section

A nowhere vanishing section of (T'M/TF)* is what we call a defining one-form for the
codimension-one foliation F.

Definition 6.1.4. Let F be a transversely orientable codimension-one foliation of M. A differ-
ential form o € QY(M) is a defining one-form of the foliation F if it is nowhere vanishing and
i = 0 for all leaves L, where iy, : L — M is the inclusion.

Being non-vanishing sections of the line bundle (T'M/TF)*, any two defining one-forms
differ by a non-vanishing factor in C*>°(M).

Remark 6.1.5. If the foliation F is induced by an orientable log-symplectic structure II on
some ambient manifold, then we can choose a defining-one form o such that oc(Xfﬂ ) =1
by Theorem 5.1.1. With this extra condition, the defining one-form is unique, even when
we consider a different volume form 2: this causes the modular vector field to change by a
Hamiltonian vector field, which is tangent to the leaves of F.

A basic property of defining one-forms is the following.

Lemma 6.1.6. Let F be a codimension-one foliation of M™, with defining one-form o € Q' (M).
Then for € QF(M), we have p € a AN M) & aAp=0.

Proof. One direction is clear, for if = a A 7 for some € QF~1(M) then
aNp=aNaAn=0.

Conversely, assume that « Ap = 0. Fix a point p € M and choose a foliated chart (U, x1, ..., zy,)
around p so that the connected components of the leaves are locally given by z,, = constant.

We write .
aly = Zgz‘dxz‘,
i=1

'The terminology “co-orientable” is also used.
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and since the pullback of o to each leaf is zero, we have

0
gj = aly <6x]> =0forj=1,...,n—1.

Hence a|y = gndzy,, with g, non-vanishing. Now write
M’U = Z fil7-~~7ikdx7:l ARERNA dxik'
1<ip <--<ip<n
Since a A = 0, we have that g, fi, i = 0 whenever n ¢ {i1,...,it}. As g, is non-vanishing,

this implies that f;, ;. = 0 whenever n ¢ {i1,...,4;}. Therefore,

,U‘U = Z fil,---,ik—hnd‘ril ARRRNA dmik—l N dxy,

1<i1 <<t —1<n

= Z f’i1,...,ik,1,ndxi1 VANRREIVAN d.’L’ik71 A dzy,

1<i1 < <ip_1<n

_ Z Mdﬂfil/\"'/\dazikfl A aly

1<iy < <ip_1<n In

= Ck‘U A\ (—l)k_l Z 7']217""%_17” d.iL'il FANRIEIVAN dl’ik_l
1<i1 <<t —1<n In

= a|U/\’I’]U. (61)

We make a covering U of M consisting of such opens U, and we choose a partition of unity
{¢v : U € U} subordinate to U. If we let

ni= Y eunu € XHM),
veud
then (6.1) implies that = a A 7. O]
Corollary 6.1.7. Let F be a codimension-one foliation of M™ with defining one-form «. Then
for € QF(M), we have that u € a A Q*=Y(M) if and only if it = 0 for each leaf L € F.
Proof. If = o A for some n € QF~1(M), then

ipp = (i) A (ign) = 0 A (ipn) = 0.

Conversely, assume that i3 u = 0 for each leaf L € F. By Lemma 6.1.6, it suffices to show that
aAp = 0. Choose p € M and let L be the leaf through p. We have to check that (a A ),
vanishes on (k + 1)-tuples (v1,...,vg41) where either v; € T,L for all j € {1,...,k+ 1}, or

v1,...,0; € TpL and vgq ¢ TpL. In the former case, we have
(@ A o1, k41) = (G A ), (01, )
= ((ize) A (izw), (V15 vkg)
0

In the latter case,

1
(o A (o1, vk41) = 7 > sgn(0) (Vo)) p(Vo(2)s - - > Vo(ir1))- (6.2)

" 0€SKy1
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If o(1) # k+1 then ap(vy(r)) = 0 since i = 0. If o(1) = k+1, then uy(vyy, - - - Vo(rs1)) =0
since i} u = 0. Hence the expression (6.2) vanishes, and we conclude that (a A p), = 0. O

Remark 6.1.8. In particular, if « € Q'(M) is a defining one-form for F, then
i7(da) = d(ipa) =0,

so that
da=p N« (6.3)

for some 8 € QY(M). This implies that a A Q*~1(M) is a subcomplex of Q°(M). Indeed, for
aAn€anQF (M) one has

dlaAn)=(da)An—aAn(dy)=—aABAn—aAi(dy)=aA(=BAn—dy) e anQF(M).

In fact, the complex a A Q*~!'(M) does not depend on the choice of defining one-form
a. Indeed, if o is another defining one-form, then o/ = fa for some non-vanishing function
f € C>®(M) and one can write

a/\nzo//\;n,
o' NE=an(fE),

showing that aAQ* 1 (M) = o/AQ*~1(M)2. Therefore, with a transversely orientable codimension-
one foliation F on M comes canonically a short exact sequence of complexes

o—>(aAQ°—1(M),d)—>(Q'(M),d)i>( SBM) ),d) — 0. (6.4)

aNQ—1(M

The quotient complex (Q°(M)/a A Q*~1(M),d) is nothing else but the complex of differential
forms along the leaves of F. Indeed, let D denote the tangent distribution of . We then have
a surjective map

Q% (M) - T(A*D*) : n— n|p,

whose kernel is
{n e Q*(M):itn=0 for all leaves L € F} = a A Q* (M),

using Corollary 6.1.7 in the last equality. And d coincides with the leafwise de Rham differential
dr, as by definition d o j = j o d. Hence,

Q° -
(M,d) = (T(A*D*),dF).

Remark 6.1.9. We make some observations concerning (6.3).

i) Although for a fixed choice of a, the form £ in (6.3) is not unique, the projection j(/3)
is. Here j is the map defined in the sequence (6.4). Indeed, if da = A = [ A«
then (8 — B8') Aa =0, so that 8 — 3 € a AQ°(M) = C*®°(M)a by Lemma 6.1.6. Then
J(B—=pB")=0,s0j(B) =3B

2 Alternatively, Corollary 6.1.7 implies that the complex o A Q*7*(M) consists of exactly those differential

forms whose pullback to the leaves vanishes. From this, it is immediate that o A Q*~*(M) is a subcomplex of
Q°*(M) (since the exterior derivative commutes with pullbacks) and that it is independent of the choice of a.
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ii) If da = B A a, then j(8) is closed for the differential d. Indeed, we have
0=d(da) =d(fANa)=(dB)Na—BA(da)=(dB)Na—BABANa=(dB)A«,

so that d3 € a A Q'(M) by Lemma 6.1.6. This then implies that

d(j(B)) = j(dB) = 0.

By the previous remark, we can now define the first foliation invariant.

Definition 6.1.10. Let F be a transversely orientable codimension-one foliation of M, with
defining one-form o € QY (M). The first obstruction class Cx of F is a class in the first foliated
cohomology group, defined as

Cr =) € 1 (gt )

a A Qe (M)
where da = 6 A a.

Let us check that Cr only depends on the foliation F, not on the choice of defining one-form.
First off, as argued before, the complex Q°*(M)/aAQ*~(M) is independent of choice of defining
one-form. Next, if @ and o/ are defining one-forms for F, then o/ = fa for some non-vanishing
f e C®(M). We have

do/ =df Na+ fda=df Na+ fBAa = <Cj‘cf—|—5)/\a’,

so that 8" = dlog(|f|) + 5. Hence

J(B8') = j(dlog(|f])) +j(B) = d(j(log(|f])) + j(8B),
which implies that [j(58")] = [1(8)].

The first obstruction class Cr measures the obstruction to the existence of a closed defining
one-form for F.

Proposition 6.1.11. Let F be a transversely orientable codimension-one foliation of M. The
first obstruction class Cr vanishes identically if and only if F has a closed defining one-form.

Proof. We have the following equivalences:
[i(8)] = 0« j(B) = d(i(f)) = j(df) (f € C%(M))

& B —df €anNQO(M)
& B =df + ga (g e C™(M)).

First assume that Cr = 0. Let a be a defining one-form for F such that da = 8 A a with
B = df + ga for some f,g € C°°(M). We consider o/ := e/, which is also a defining one-form
for F since e~/ is non-vanishing. Moreover,

do =d (e_fa>
= —eTdf ha+eTda

= —eTdf ha+e BN
= —eTdf Na+e T (df +go) Ao
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=—eldf Na+e Tdf Na
=0.

Hence if Cx = 0, then we can find a closed defining one-form for F. Conversely, if « is a closed
defining one-form for F, then da = 0 = 0 A v, so that we can take § = 0. It follows that

Cx = [(0)] = 0.

6.1.2 The second obstruction class

In what follows, we assume that M is endowed with a regular corank-one Poisson structure II
and that F is the corresponding codimension-one symplectic foliation. Furthermore, we assume
that the first obstruction class Cr vanishes, so that F is defined by a closed one-form o € Q!(M).
We fix a throughout.

Definition 6.1.12. A two-form w € Q?(M) is a defining two-form of the foliation F induced
by the Poisson structure II if i7w = wy, is the symplectic form on each leaf iz, : L — M.

Remark 6.1.13. A codimension-one symplectic foliation F always has a defining two-form.
This follows from exactness of the sequence (5.2), or merely from surjectivity of the map r in
that sequence. In case F is induced by an orientable log-symplectic structure A on some ambient
manifold, then one can choose a defining two-form w such that ¢ Xme =0, by Theorem 5.1.1.

With this extra condition, the defining two-form is unique (for fixed choice of volume form §2).

Note that
i1 (dw) = d(ijw) = dwp, =0

for all leaves L € F, so that by Corollary 6.1.7 we can write
dw=puANa for some yu € Q*(M). (6.5)
Remark 6.1.14. We make some observations concerning (6.5).

i) Although for a fixed choice of «, the form p in (6.5) is not unique, the projection j(u) is.
Indeed, if dw = pAa = ' Aa, then (u— ') Aa = 0, so that u — p' € a AQY(M) by
Lemma 6.1.6. Then j(u — ') = 0, so that j(u) = j(u').

ii) If dw = p A «, then j(p) is closed for the differential d. Indeed, using the fact that « is
closed, we have

0 = d(dw) = d{p A @) = (dp) A @+ i A (d) = (ds) A a
so that du € a A Q%(M) by Lemma 6.1.6. This then implies that
d(j(u)) = j(dp) = 0.
These observations allow us to define the second foliation invariant.

Definition 6.1.15. Let II be a corank-one Poisson structure on M and let F be the induced
codimension-one symplectic foliation. Assume that the first obstruction class Cx vanishes, and
fix a closed defining one-form « for F. The second obstruction class or of F is a class in the
second foliated cohomology group, defined as

Q* (M) ) |

or = [j(u)] € H? <04/\Q°—1(M)

where dw = u A a.
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Let us check that the second obstruction class o does not depend on the choice of defining
two-form for F. If w and w’ are both defining two-forms for F, then ¢} (W' —w) = wp —wr =0
for each leaf L € F. Hence by Corollary 6.1.7, we get

W =wt+ané for some £ € QN (M).
Therefore,
dw' =dw+dané—andé
=puANa—aANd
= (N - dé.) A «,

so that ' = p — d¢. Hence
J(W) = j(u) = 5(d€) = j(u) — d(5(€)),
which implies that [j(1/)] = [j(p)]-

The second obstruction class o r measures the obstruction to the existence of a closed defining
two-form for F.

Proposition 6.1.16. Let II be a corank-one Poisson structure on M and let F be the induced
codimension-one symplectic foliation. Assume that the first obstruction class Cx vanishes, and
fix a closed defining one-form a for F. The second obstruction class or vanishes identically if
and only if F has a closed defining two-form.

Proof. We have the following equivalences:

(W] =0 (k) =d(i(n) =j(dn)  (n€Q(M))
Sp—dneanQ (M)
Spu=dpg+yvNa (y € QL (M)).
First assume that o = 0. Let w be a defining two-form for F with dw = pAa and p = dn+y A«
for some 1,7 € QY(M). Consider w’ := w —n A a. Then o' is still a defining two-form for F
since for each leaf L € F:
ipw' =ipw — (ign) A (ipa)
=wr — (ign) A0
= Wy,.

And o' is closed since

dw' = dw — (dn) A a+n A da
=pANa—(dn) Ao
=(dn+yNa)Na—(dn) AN
= (dn) Na— (dn) Na
=0.

Hence if 07 = 0, then we can find a closed defining two-form for F. Conversely, if w is a closed
defining two-form for F, then dw = 0 = 0 A «, so that we can take p = 0. It follows that

or = [j(0)] = 0.
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Remark 6.1.17. We can now reformulate the results obtained in Section 5.3.1 as follows: A
corank-one Poisson structure (Z,I1z) is induced by a log-symplectic structure (on some ambient
manifold M) if and only if Cxr = o = 0, where F is the symplectic foliation of (Z,11z).

Throughout this section, as well as in what follows, we only consider codimension-one sym-
plectic foliations that are transversely orientable (i.e. defined by a one-form). We may wonder
how stringent the assumption of transverse orientability is. In fact, if F is a codimension-one
symplectic foliation of M, then the leafwise-symplectic forms induce an orientation on T'F, so
that transverse orientability of F is equivalent with orientability of M.

6.2 Vanishing first invariant: unimodularity

Recall that to an orientable Poisson structure (M, II) one can canonically associate its modular
class [X11] € HE(M), which is the cohomology class of any modular vector field on M. The
Poisson structure (M, II) is called unimodular if this cohomology class [X1] is zero. We will now
show that unimodularity of (M, II) is closely related with the first invariant Cr of its symplectic
foliation.

Let (M?"*1 II) be an orientable corank-one Poisson manifold and let F be its symplectic
foliation. We can choose a defining one-form o € Q!(M) and a defining two-form w € Q2(M) of
F. Then © := a Aw" is a volume form on M, as noted in (4.17). Let us compute the modular
vector field of II associated with this volume form. We calculate:

ix;(@AW") =1x, (@) ANW™ —a Ay, (W")
=—aAix,(W")

= —naAix,(w) A w1

using in the second equality that X is tangent to the leaves and therefore tx,(a) = 0. Next,
note that for any leaf iy, : L — M, we have

where wy, = —HEI is the symplectic form on the leaf L. Hence we have for each leaf L € F that

i (wb(xf) + df) —0,

so that by Corollary 6.1.7,
a A (wb(Xf) + df) = 0.

Hence
a /\wb(Xf) = —a Adf,

so that altogether

ix (@ Aw™) = —na A x,(w) Aw'l
=na Adf AWl
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Therefore, we get by using Cartan’s magic formula:

£x,0=d (LXf(a /\wn))
= nd(a Adf Aw™ 1)
= n(da) Adf AWt —na Ad(df Aw™Th)

=nBAaNdf ANwL

f

In the last equality, we used (6.3) and also (6.5), which implies that & A dw = 0. On the other
hand, we have

£x,0 = XR())O = df(XQ)a nw" = (LXlgIadf) aAwh,

so that
na ANdf ANBAwW ! = (LXI(?df> aAw”.

Now, the equation
a A (ndf ABAWY) =an ((Lxgdf> w”)
implies
a A (ndf ABAWTL— <LX1§[)df> w”) =0,
so that by Lemma 6.1.6 and Corollary 6.1.7
i (ndf ABAWT (Lngf) w”) —0
for each leaf L € F. Now
i3, (ndf A BAW"™) =ndfr, ABr Awp !,

where wy, = 1jw, fr = i1 f and Br = ;3. On the other hand, we have that Xr(? is tangent to
the leaves of F by Lemma 8.7.1 in the appendix. Using this fact, we have

it ((xgdf) @) =it (ixgdfr) i
- (Lch?df> ’ng
= 1|, (3
= (rxg), ) i
So on each leaf L € F, we have
ndf, A By Aw? ! = (LXS,Lde) Wl (6.6)
Because dfr, A w} is a (2n 4 1)-form on the 2n-dimensional manifold L, we have
txg| (dfL AwL) =0,

which implies that
-1
(LXg|Lde> wp =dfr, A (mXﬁ)th) Awi . (6.7)

By (6.6) and (6.7), we get
dfy, A wzil VAN (LXI(:?’LWL — ﬁL> =0. (6.8)
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Since we started with arbitrary f € C°°(M) and the map i} : C*°(M) — C*°(L) is surjective,
it follows that (6.8) holds for all functions f;, € C°°(L). This implies that?

wz_l A (LX§|LwL — BL) =0.
Lemma 6.2.1 below then implies that
Lxg| WL = AL
Lemma 6.2.1. Let (M?",w) be a symplectic manifold. Then the map
SN M) - Y M) i p— W0 AL
is an injective map of C°°(M)-modules.

Proof. Suppose that w™ ' Ay = 0. Pick € M and let (q1,p1,.-.,qn, pn) be Darboux coordi-
nates around x. We may then write locally around =z:

n n n
w = Zd%’ Adp; and p= Z fidg; + Zgjdpj>
i=1 =1 Jj=1

so that

n
w”fl:(n—1)!qu1/\dp1/\---/\dqi/\dpi/\--‘/\dqn/\dpn.
i=1

Then by assumption

i=1

0—(quwdplA-~-Adqi/A\dpiA~--Adandpn>A > fidgi+)_gidp; |
i=1 j=1

which implies that

n
> (fieidqy A+ Ndpi A+ Adpn + gicidgy A+ Ndagg A+ Adpy) =0,
=1

where ¢€;, €, € {£1}. Then one necessarily has f; =g, =0for i =1,...,n. O

We have now proved the following:

3Indeed, let € € Q*" (L) and assume that df A& = 0 for all f € C*°(L). Pick p € L and write in coordinates
(U,z1,...,%2,) around p:

2n
€= &dry Ao Adz; Ao Adaan.
=1

Let g € C*°(L) be a smooth bump function supported inside U such that g = 1 near p. For the functions
gz; € C*°(L), we have by assumption

2n
0=dp(gx;) N&p = dpzj A (Z &G(p)dpzr A+ Ndpzi A+ A dpx2n>
i=1
= £ (p)dpxl A< NdpTan,

which implies that &;(p) = 0. Therefore, £ = 0.
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Proposition 6.2.2. Let (M?"*1 1) be an orientable corank-one Poisson structure with sym-
plectic foliation F. Fix a defining one-form « and a defining two-form w of F. Then the
modular vector field Xﬁ) with respect to the volume form © = a Aw" is the vector field which
on each symplectic leaf L € F satisfies

Lxg| WL = BL, (6.9)

where wy, is the symplectic form on L, By, =118 and doo = B A a.

This statement makes sense. Although for a fixed defining one-form «, the differential form
B is not uniquely determined, its pullback Sz to a leaf L € F is unique. This was noted in i)
of Remark 6.1.9. Next, the property (6.9) indeed defines X uniquely: there exists only one
vector field satisying this property, on each leaf L given by

(w4)" (50)

using non-degeneracy of wy,. As a corollary of Proposition 6.2.2, we obtain the following criterion
for unimodularity.

Corollary 6.2.3. An orientable corank-one Poisson manifold (M?*"*1,1I) with induced sym-
plectic foliation F is unimodular if and only if the first obstruction class Cx vanishes identically.

Proof. First assume that Cx = 0. Choose a closed defining one-form o € Q' (M) and a defining
two-form w € Q?(M) for F. Then
0=da=8Aaqa,

which implies that f, := i} 8 = 0 for each leaf L € F (use Lemma 6.1.6 and Corollary 6.1.7).
By Proposition 6.2.2, we get that the modular vector field Xg for the volume form © = a AwW™
satisfies

X8|, = (wh) B = (1) ©=0

for each leaf L € F. Hence Xl(?? = 0, which implies that (M?"*! II) is unimodular.
Conversely, assume that (M?"! II) is unimodular. Fix a defining one-form o and a defining
two-form w for F. We then know that there exists h € C°°(M) such that

/\ n
Xan" = X

Proposition 2.9.6 implies that with respect to the volume form u := e’a A W™ 1= o/ A W™, we
have
Xh =X, - Xiog(ery = Xn — Xp = 0.

Note that o/ = e« is also a defining one-form for F. Let 8’ € Q'(M) be such that
do/ =B Nd.
Since by Proposition 6.2.2
0=xtl, = («4) ).
we get that i7 5/ = B = 0 for each leaf L € F. By Corollary 6.1.7, we get 5’ = fao/ for some

f e C>®(M), so that
do/ =B Nd' = fo' N/ = 0.

So o’ is a closed defining one-form for F, which implies that Cx = 0 by Proposition 6.1.11. [
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Remark 6.2.4. In particular, the singular locus of a log-symplectic manifold is a unimodular
corank-one Poisson manifold.

We present an alternative argument to obtain Corollary 6.2.3. Let (M?"*! II) be an ori-
entable manifold with corank-one Poisson structure. Fix a defining one-form o € Q'(M) and
a defining two-form w € Q?(M) for the symplectic foliation F induced by II. We consider the
complex of differential forms along the leaves of F, with projection map j, as in (6.4):

(Q*(M),d) - <Q.(M)),d> .

aNQ—H (M
Lemma 6.2.5. The map

. QM)
I a A QF1(M)

— XM(M) : j(B) = IF(B) (6.10)
is well-defined.
Proof. Assume j(B8) = j(B'). Then 8’ = 3+ a A7 for some n € Q¥~1(M), so that

IH(8') = 14(B) + 1% () A TIH(n).

We argue that IT#(a) = 0. Let v € Q'(M) be arbitrary. Since o vanishes on vector fields tangent
to the leaves of F, we have

0 = (o, IT(7)) = —(IT¥(), ).

So TI*(a) pairs to zero with any ~one-form on M, and therefore IM*(a) = 0. It follows that
IT%(8') = I¥(B), so that the map II¥ is well-defined. O

The maps (6.10) combine to a chain map (up to sign)

IIF (M%(]‘QM)CJ) — (X°(M),dy).

Indeed, we have for n € QF(M):

~dn (TE(j () ) = ~dn(I(n)) = T¥(dy) = TG (dn)) = TEA(G (),
using Lemma 2.8.4. So we get induced maps in cohomology
] : HE(M) — Hfy(M) : [j(n)] = [IF(n)],

denoting the foliated cohomology groups by H%(M). In degree one, we have the following
result, which is an observation of our own.

Lemma 6.2.6. The linear map

] : Hp(M) — Hiy(M)

is injective and up to sign, it takes the first obstruction class Cr € H}(M) to the modular class
[Xn] € HE (M), that is

[T*)(CF) = —[Xu]. (6.11)
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Proof. Writing da = 8 A «, we know that Cx = [j(5)], so that Cr is mapped to [II*(3)]. We
will show that
IH(8) = — X"

Since each leaf L € F is a Poisson submanifold of M with induced Poisson structure 1I;,, we
have

)| =05 = () (5) = - X3,

using Proposition 6.2.2 in the last equality. This proves (6.11). As for injectivity of [II¥], assume
that

0 = 1] ([ (n)]) = [IT*(n)].

Then IT#(n) is a Hamiltonian vector field, so there exists f € C°°(M) such that II¢(n) = II*(df).
This implies that on each leaf L € F:

I (i3, () =TI (6. (d)).
and hence i} () = i} (df) since HﬁL is injective. So we get that for each leaf L € F:

which implies that j(n — df) = 0 by Corollary 6.1.7. So j(n) = j(df) = d(j(f)), which implies
that

] = [d(G()] = 0.
O

A particular consequence of Lemma 6.2.6 is Corollary 6.2.3. Note that the map [II] in
Lemma 6.2.6 is not surjective in general: it only reaches classes represented by Poisson vector
fields that are tangent to the symplectic leaves. So classes with a representative that is transverse

to the leaves at some point do not lie in the image of [IT¢].

6.3 Vanishing first invariant: a stability theorem

We now prove a stability theorem for transversely orientable codimension-one foliations with
vanishing first invariant on compact connected manifolds. It is similar to Reeb’s global stability

theorem?.

Proposition 6.3.1. Let F be a transversely orientable codimension-one foliation on a compact
connected manifold M with Cr = 0. We then have:

i) There exists a nontrivial family of diffeomorphisms ®; : M — M, defined for t € R, that
takes leaves to leaves.

it) If F contains a compact leaf L, then all leaves are compact.

iii) If F contains a compact leaf, then each leaf L of F has a saturated neighborhood U and
a projection f : U — I C R such that the foliation F|y is given by the fibers of f.

4Reeb’s global stability theorem states the following: “Let F be a transversely orientable codimension-one
foliation of a compact connected manifold M. If F contains a compact leaf L with finite fundamental group,
then every leaf of F is diffeomorphic to L. Furthermore, M is the total space of a fibration f : M — S! with
fiber L, and F is the fiber foliation {f~*(0): 0 € S'}.”

® A saturated neighborhood is a neighborhood that is a union of leaves.
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Proof. i) Since Cx = 0, we can choose a closed defining one-form a € Q(M) of F. Note that

ii)

« trivializes the conormal bundle ("M /T F)*, so that also the normal bundle TM /T F is
trivial. We can choose a global non-vanishing section v of T'M/TF, and rescaling v we
can assume that a(v) = 1. In particular, v is transverse to the foliation F. Since M is
compact, we have that v is complete, and we claim that its flow {®; : M — M }4cR is the
family of diffeomorphisms sought for. Note that

Lya = d(tpa) + tyda = 0,

which implies that ®;a = « for all t € R. Indeed, we have

d d d d
—(®a) = — oF = — b, 0P) ] = — OF(PF
dt( ta) dS s:0< t+sa) dS o0 [( © t) O{] dS S:O[ t( Sa)]
* d * *
— P (ds _ ¢5a> — ®F (Lya) =0,

so that ®a is constant. But as ®jo = «, this then gives ®fa = « for all £ € R. We now
show that each ®; takes leaves to leaves. So let L € F be a leaf. We first show that ®,(L)
is integral, i.e. that

T, () ®i(L) = Ker (ag,(y)) forpe L. (6.12)

If wy € Tp,p)Pe(L) then by surjectivity of ((®),), there exists wi € T,L such that
wz = ((®4),), (w1). We then have

g, (p) (W2) = g, (p) (((@t)*)p (w1)> = (), (w1) = ap(wr) = 0.

Hence we have the inclusion T, () ®¢(L) C Ker (o .(p)) so that the equality (6.12) follows
by counting dimensions. So ®;(L) is integral, and since the leaves of F are the maximal
integral submanifolds of the distribution Ker(«), there exists a leaf Lj € F such that
®,(L) C L;. Composing with ®_; gives L C ®_;(L}). But the same argument shows that
®_4(L}) lies inside some leaf L' ,. Hence

Lc® (L)cl,,

so that L = L' ,. In particular, L = ®_;(Lj}), so that ®;(L) = L}. So ®; takes leaves to
leaves, and this finishes the first step.

Let N be the union of all compact leaves in M. Then N is nonempty by assumption, and
moreover IV is open. Indeed, if L is a compact leaf, then we can find an open neighborhood

{®y(L) : t € (—e€,€)}

of L that is contained in N. But also M \ N is open: let L’ be a non-compact leaf and let
m € L'. Assume by contradiction that m would not be an interior point of M \ N. Take
an open neighborhood

[@L) it € (—e,6))

of m. Necessarily, this neighborhood then intersects a compact leaf L. So there exists
to € (—€,¢) and m’ € L' such that ®;(m') € L. But then the leaves @, (L') and L
intersect, so that ®;,(L') = L. Hence L' = ®_; (L) is compact, being the image of the
compact set L under the continuous map ®_;,. This is a contradiction. So m is an interior
point of M \ N, showing that M \ N is open. Since N is a nonempty clopen in M, and
M 1is connected, it follows that N = M.
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iii) Let L € F be a leaf (which is automatically compact). Since « is closed and ija = 0,
the Relative Poincaré Lemma 1.3.9 gives a tubular neighborhood U of L and a function
f on U such that o = df and f|;, = 0. Shrinking U if necessary, we may assume that U is
saturated®, and since L is connected, we can choose U to be connected as well. Note that
[ is a submersion, since d,f = o, # 0 at all point p € U. The leaves L’ inside U satisfy

so that f is constant on each leaf. Since leaves are maximal with the property (6.13), it
follows that the leaves inside U are the level sets of f. At last, since U is connected and
f is an open map (being a submersion), we have that f(U) := I C R is an open interval.

O

By compactness of M, we can patch together the local pieces of information found in iii) of
Proposition 6.3.1 to obtain a global statement.

Proposition 6.3.2. Let F be a transversely orientable codimension-one foliation on a compact
connected manifold M with Cr = 0, and assume that F has a compact leaf. Then there exists
a fiber bundle F : M — S such that F coincides with the fiber foliation of F.

Proof. Let us first show that the leaf space M /F is a smooth manifold, when endowed with the
quotient topology of m: M — M/F.

i) By Proposition 6.3.1, we know that all leaves of F are compact. The leaf space of every
codimension-one foliation with compact leaves is Hausdorff [Eel, p. 364].

ii) The leaf space M/F is second countable. Indeed, the projection map = : M — M/F is
open [CN, p.47], and it is well-known that open quotients of second countable spaces are
second countable.

iii) We now exhibit a smooth structure on M/F. Choose p € M /F. We show that there exists
an open neighborhood of p that is homeomorphic with an open subset of R. Proposition
6.3.1 gives a saturated open U around 7~ !(p) = L and a submersion f : U — I C R such
that the leaves of F inside U are level sets of f. Then 7(U) is an open neighborhood of
p and we define a map ¢ : 7(U) — I C R by the following commutative diagram:

7r|U‘/ » (614)

That is, we define )(L;) = f(q), where ¢ € U and L, is the leaf through ¢. We claim that
¢ :w(U) = I C R is a homeomorphism. First note that « is injective: if ¢(Lq) = ¥(L,)
then f(q) = f(r) so that ¢ and r lie in the same level set of f. That is, ¢ and r belong
to the same leaf, so L, = L,. Next, 1) is surjective: if ¢ € I then there exists ¢ € U with
f(q) = ¢ by surjectivity of f, so that ¥(7(q)) = f(q) = c¢. Continuity of ¢ is automatic: by
the universal property of the quotient topology, we have that 1 is continuous if and only

SHere we use that all leaves of F are compact. Reeb proved in his thesis that the projection = : M — M /F
onto the leaf space is a closed map when F is a codimension-one foliation with compact leaves and M/F is
endowed with the quotient topology [CO, p. 277]. Since the projection m : M — M/F is closed, we may find a
saturated open neighborhood W of L such that L C W C U. This is proved in [Kan, Proposition 1.2.6].
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if 1) o |y is continuous. But 1 o w|yy = f is smooth, hence certainly continuous. At last,
we check that ¢~! is continuous. If V is open in 7(U), then we can write V = O N7 (V)
where O C M/F is open. Then 771(0) is open in M. Since U is saturated, we have,

amHonxU) =1 O)nr Y (=(U))=x"1(O)nU,
so that 7r|l}1(V) is open in U. Since f is a submersion, it is an open map, and therefore
(V) = f(l; (V)
is open in /. We have now showed that M /F is covered by charts (7(U), )

iv) It remains to show that these charts are smoothly compatible. Assume we are given charts
p:m(U) — Jand ¢ : (V) — I such that 7(U) N7(V) # 0. We show that the map

Yot p(m(U)N(V)) = ¢(x(U)Nx(V))
is smooth. Note that, since U and V' are saturated, we have
@O Na(V) =7 (@(U) na (= (V) =UNV,

so that
n(UNV)=mx (7‘(’71 (r(U)N=(V))) ==U)N=x(V),

using surjectivity of 7 in the last equality. Hence we get a commutative diagram

Unv — s u@U)na(v)

WUmV‘/ g
P

T(U)Na(V) —E— o (x(U) N7 (V))

with surjective submersions f : UNV — ¢ (n(U)N7(V))and g : UNV — @ (n(U) N7(V))
as above. Inserting the map 1 o o' gives a commutative diagram

Unv —L sy @@)nmv))

(6.15)

Indeed, for all p € U NV we have

(oo™ (9p) = (Vou™) (p(x(p) = (x(p) = f(p).

Since g is a smooth surjective submersion and f is smooth, also 10! is smooth because

of the commutative diagram (6.15). For a proof of this fact, see [Lee, Theorem 4.29].

We have now established that M/F is a smooth one-dimensional manifold. It is connected
and compact, being the image of the connected compact space M under the continuous map
7 : M — M/F. Therefore M/F is diffeomorphic to S!, and we obtain our candidate fibration
F: M — S as the composition

M= M/F =5 St
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The map 7 is smooth: its local representation in charts & on M and ¥ on M/F is by 6.14
poroa = foal,

which is smooth. Hence also F : M — S is a smooth map. To see that F : M — S is indeed a
fibration, it suffices to show that F is a proper surjective submersion, by Ehresmann’s Lemma’.
For sure F' is surjective, being a composition of surjective maps. Next, we note that 7 is a
submersion. Indeed, around p € M we find an open U, a submersion f : U — I C R and a

chart ¢ : m(U) — I C R such that ¢ o 7|y = f (see (6.14)). Taking derivatives, we get

dp ('lﬂ o W‘U) == drr(p)w (¢] dp7T = dpf,

so that d,m is a composition of surjective maps

dpm = dﬂ(p)w_1 odpf.

Hence 7 is a submersion, and therefore F' is a submersion as well. At last, we check that
F : M — S'is proper. If C C S' is compact, then C is closed since S' is Hausdorff. By
continuity of F, we get that F~!(C) is a closed subset of the compact space M, so that F~1(C)
is compact as well. By Ehresmann’s Lemma, F : M — S! is indeed a fiber bundle, and the
fibers of F' clearly coincide with the leaves of F. O

In particular, the leaves of F are all diffeomorphic, being the fibers of the fibration F : M — S*.
We have now proved the following stability theorem:

Theorem 6.3.3. Let F be a transversely orientable codimension-one foliation of a compact
connected manifold M with Cxr = 0. If F contains a compact leaf L, then every leaf of F is
diffeomorphic to L. Furthermore, M is the total space of a fibration F : M — S' with fiber L,
and F is the fiber foliation {F~(0) : § € S'}.

The condition that Crx = 0 is clearly necessary: if we have such a fibration F : M — S,
then F*(df) is a closed defining one-form for the foliation F, where 6 is the “coordinate” on
the circle.

We now further specify the fiber bundle structure ' : M — S' obtained in Theorem 6.3.3.
The fibers of F' are the leaves of F, and in Proposition 6.3.1 we constructed a vector field v
transverse to the leaves. Therefore, this vector field v defines an Ehresmann connection on M,
at all points p € M given by

H, := Ruy,,.

We can then lift the loop in S' as follows: let v : [0,1] — S! be a parametrization of the circle.
The tangent vector field 4/ has a unique horizontal lift (v/) to M. That is, (7/)¥ satisfies
(V)f € H, forall pe M
(£, (M) = 'y},(p) forallp e M

Let v, be the integral curve of (7/)¥, starting at p € F~1(y(0)). By compactness of M, we
have that 1, is defined for all time, and 1, lifts the loop in S! horizontally, namely

! _ (AN\H

wp(t) = (v )wp(t) € Hv,z;p(t)
Fo ¢p =7

"Ehresmann’s Lemma states: “If f : M — N is a proper surjective submersion between smooth manifolds,

then f is a locally trivial fibration.” Recall that a map f : X — Y between topological spaces is said to be proper
if inverse images of compact subsets of Y are compact in X.
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Definition 6.3.4. In the above setup, let L = F~1(y(0)) € F. The holonomy map is the
diffeomorphism ¢ defined by
¢: L= L:p— (1),

where 1), is the integral curve of (7/)# starting at p.
We then obtain:

Corollary 6.3.5. Let F be a transversely orientable codimension-one foliation of a compact
connected manifold M with Cr = 0, and assume that the foliation contains a compact leaf L.
Then the manifold M is the mapping torus® of the diffeomorphism ¢ : L — L given by the
holonomy map of the fibration over S'.

Proof. We are given fiber bundles F : M — S' and ¢ : #&(ﬂ)n — S with typical fiber L.

A fiber bundle isomorphism between the two is given by

Lx[0,1] ¢
E0~(6@) 1) » M
q Fo
[0,1] [0,1]

N
7

0~1 t—1—1 0~1

where ¢(p,t) = ¥,(1 —t) and 1, is the integral curve of (1) starting at p. Note that the map
@ is well-defined since

Yp(1) = ¢(p) = Vg (0).

6.4 Vanishing first and second invariant: a stability theorem

Now assume that (M?2"*! 1) is an orientable corank-one Poisson structure, and let F be its
symplectic foliation. We want to see what happens when both invariants Cr and o vanish.
Recall from Proposition 6.1.11 and Proposition 6.1.16 that this is the case exactly when F has
a closed defining one-form and a closed defining two-form.

Proposition 6.4.1. Let (M?"*1 II) be an orientable corank-one Poisson structure with sym-
plectic foliation F. The invariants Cr and or vanish if and only if there exists a Poisson vector
field transverse to the leaves of F.

Proof. This is the equivalence ii) < i) in Theorem 5.3.1. It is merely a consequence of
Theorem 5.1.1. Concretely, given defining one- and two-forms « and w, we consider the vector

field v uniquely defined by
{a(”) =1 (6.16)

Lyw =0

Conversely, given a vector field v on M transverse to F, we consider defining one- and two-forms
a and w uniquely specified by the equations (6.16). We showed in the proof of Theorem 5.1.1
that v is Poisson if and only if da = dw = 0. 0

8The mapping torus of a diffeomorphism ¢ : L — L is %. For instance, if L = (—¢,¢€) and ¢ = —Id,
then we obtain the Mobius strip.
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Let (M?"T1 1) be an orientable corank-one Poisson structure with symplectic foliation F.
Assume moreover that M is compact and connected, that Cx = o = 0 and that F contains
a compact leaf L. The conclusions of previous section remain valid, the only difference being
that the transverse vector field v, the flow of which takes leaves to leaves, is now a Poisson
vector field. The foliated manifold M again has a fiber bundle structure, with an Ehresmann
connection defined by the vector field v. Since the parallel transport of the connection preserves
the symplectic structure on the leaves, we obtain:

Theorem 6.4.2. Let (M?"*1 1) be an orientable compact connected reqular Poisson structure
of corank one, and let F be its symplectic foliation. If Cr = or = 0 and F contains a compact
leaf L, then every leaf of F is symplectomorphic to L. Furthermore, M is the total space of a
fibration over S and it is the mapping torus of the symplectomorphism ¢ : L — L given by the
holonomy map of the fibration over S*.

Proof. We only have to check that the flow ®; of the transverse Poisson vector field v above
preserves the symplectic structures on the leaves. Suppose (L,w) and (L',w’) are symplectic
leaves of F, and that ®,(L) = L'. We have to show that (®;|;)" (w') = w. We first note that

(®efp), 1 =1y,

where II;, and II;, are the Poisson structures on L and L’ induced by II. Indeed, since ®; is a
Poisson diffeomorphism, we have (®;), I = II, so that restricting to L we get

(®l), () =g,y = Hp.
This implies that for all p € L
f _ g *
(1), = @ (@) o (1) o (dp(@ids)".
hence . .
(@) = @n(@lu))o (w3) o (@dp(@ilr))",

so that

sy = ((dp(@0]2)) ™) 00 (dp(i]1))
It follows that for v, w € T},L, we have
[(@4])" W, (0,10) = wh, ) (dp(@e]2) (v), dp(@el2) ()
= () gy ) (T (@e]2) () (A (@] 1) (w))
= [((@p(@de)) ™) o wh(w)] (dpl@ilo)(w))
= |wh(v) © (dp(@el2)) ] (dp(@il2) (w))

= wy(v)(w)
= wp(v, w).

Hence ®;|;, : (L,w) — (L',w’) is a symplectomorphism. O

In particular, this theorem applies to the singular locus (Z,11z) of a log-symplectic structure,
provided that Z is compact and connected and that the foliation of IT; has a compact leaf.
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Chapter 7

Outlook

In this chapter, we give a brief overview of some aspects of log-symplectic structures and related
concepts that were not treated in detail in this thesis.

7.1 Deformations of log-symplectic structures

In [MO], one describes the space of Poisson bivectors near a given log-symplectic structure, up
to small diffeomorphisms. Their main statement is the following:

Theorem 7.1.1. Let (M,Z,11) be a compact log-symplectic manifold. Consider w1, ...,w]
closed two-forms on M and 71, ...,V closed one-forms on Z such that their cohomology classes
form a basis of H*>(M) and of H'(Z) respectively. For ¢ € R! and § € R¥, denote by

We 1= Zé:l €;w; and v5 1= Zle 0;vi- Then:

i) For small enough ¢ € R! and 6 € R*, we have that the bivector HZYT; defined by

(%) =T 4w + dlog(V) A p* (1)

is a log-symplectic structure on M with singular locus Z. Here p : E — Z s a tubular
neighborhood of Z, and X is a distance function adapted to Z, as in Lemma 4.1.16.

ii) There is a C'-open neighborhood U C T(A*TM) around 11, such that every Poisson
structure II' € U 1s isomorphic to H% for some vectors € € RL, § € RF.

iii) There is a C'-neighborhood D C Diff(M) around Idy; such that for ¢ € D, the equality
O (H;Tg) = H:’;,’ implies e = € and § = §'.

Let us make some remarks on the different items in above theorem.

i) The given log-symplectic structure IT has an inverse b-symplectic form II~! = w, that can
be decomposed as
w = a+ dlog(\) Ap*(6),

for closed differential forms o € Q%(M) and 6 € Q'(Z). Adding a CY-small closed b-two-
form p to w yields another b-symplectic form, since non-degeneracy is an open condition.
This implies part i) of Theorem 7.1.1. If we decompose

p=w+ dlog(A) Ap*(v),
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for small closed differential forms w € Q*(M) and v € Q'(Z), then the deformed log-
symplectic structure is the inverse of

w+pu=a+w+dlog(A) Ap*(0+ ).
This deformation has the following geometric interpretation:

e On one hand, we deform II by adding the restriction of w to the symplectic form on
each leaf of II. This type of transformation is called a Gauge transformation. It can
be applied to any Poisson structure.

e On the other hand, we transform II by changing the foliation on the singular locus
Z: the foliation is no longer given by the kernel of €, but it now integrates the kernel
of 8 4+ ~y. This type of transformation is specific to log-symplectic structures.

In fact, these two types of deformations cover all Poisson structures C'-close to a log-
symplectic structure, by i) of Theorem 7.1.1.

ii) To have any hope at all that Poisson bivectors near a log-symplectic structure II are again

log-symplectic, one has to interpret “near” in the C'-sense. If IT' is a C%-small deformation
of II, then A"II’ might very well no longer be transverse to the zero section of A2*TM. In
order to preserve transversality, we need that the derivatives of II (in a local trivialization)
are not changed too much. That is, we have to consider C'-deformations of II.
To prove i) in Theorem 7.1.1, one argues as follows. First one proves that a Poisson
structure I that is C'-close to the log-symplectic structure II is also log-symplectic,
possibly with different singular locus Z’. Then one finds a diffeomorphism (II') that
takes II’ to a log-symplectic structure with singular locus Z. If ' is the b-symplectic form
inverse to 1(IT'),(I'), then it turns out that the class [w'] € "H2(M) is of the form [w. s],
where

We g = w + T + dlog(\) A p*(7s).

One then obtains the conclusion 4i) by applying a b-version of Moser’s theorem®.

Recall that by the b-Mazzeo-Melrose Theorem 4.3.1, we have that *H?(M) = H?(M) @ H'(Z)
via

W] = ([al, [6]) ,

where a + dlog(\) A p*(0). Moreover, it is proved in [MO] that the pair ([«], [f]) is canonically
associated with w. So we can summarize Theorem 7.1.1 as follows: the Poisson structures C'-
close to II are parameterized by an open neighborhood of 0 in *H?(M) = H?(M) & H'(Z), up
to C'-small diffeomorphisms.

This is in perfect analogy with the symplectic case: if (M, w) is a compact symplectic manifold,
then the space of symplectic structures C’-near w modulo diffeomorphisms connectable with
the identity map corresponds to an open neighborhood of 0 in H?(M).

At last we recall that heuristically, the deformations of a Poisson structure II are governed by the
second Poisson cohomology group H%(M ). Theorem 7.1.1 makes this description very accurate
in case II is a log-symplectic structure, since we showed in Chapter 4 that HZ(M) = *H?(M)
in that case.

"Lemma 2 in [MO]: “Let ¢ € Q?(M) be b-symplectic form on a compact b-manifold (M, Z). If ¢’ € *Q*(M)
is a closed b-two-form such that (1 — )¢ + ¢’ is non-degenerate for all t € [0,1] and [¢] = [¢'] € "H?*(M), then
there exists a b-diffeomorphism ¢ : (M, Z) = (M, Z) such that ¢*(¢') = ¢.”
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Example 7.1.2. Consider S? C R3, endowed with cylindrical coordinates # and z. A log-
symplectic structure on S? is given by

o 0
M=z—-AN—
‘00" 92
as shown in Example 3.1.5. Its singular locus is the equator S* <+ {z = 0}, and the inverse
b-symplectic form is
d
w=T"1=% Adb.
z
Since the two-form dzAdf on S? is closed but not exact, its class [dz Adf] generates H?(S?) = R.
Similarly, the angular form df on S* is closed but not exact, so that its class [df] generates
H1(S') 2 R. Theorem 7.1.1 now implies that every Poisson structure C'-close to II is isomor-
phic to one of the form

dz dz -1
s = 7/\d9+edz/\d0+(57/\d0
__ 0. 9
14 ez+600 0z

7.2 Submanifold theory

Submanifold theory has been studied intensely in symplectic geometry. An important class
of submanifolds consists of the Lagrangian ones, which are the half-dimensional submanifolds
N C (M,w) on which the symplectic form w vanishes. Weinstein’s well-known Lagrangian
neighborhood theorem gives a normal form near a Lagrangian submanifold, namely:

Theorem 7.2.1 (Weinstein). If L C (M,w) is a Lagrangian submanifold of a symplectic man-
ifold (M,w), then there exist a neighborhood U of L in M, a neighborhood V' of L in T*L and
a symplectomorphism f : (U ,w) — (V,wr=1) that is the identity on L.

Moreover, it is well-known that the graph of a one-form a € T'(T*L) = Q(L) is a Lagrangian
submanifold of T*L if and only if « is closed. Therefore, the Lagrangian submanifolds near a
given Lagrangian submanifold L correspond to small closed one-forms on L. One can show that

the moduli space?
{Lagrangian submanifolds near L}

Hamiltonian diffeomorphisms

is an open subset of H'(L). Hence it is smooth and finite dimensional if L is compact.

Also for a Poisson manifold, there is a notion of Lagrangian submanifold C', defined by asking
that for any symplectic leaf S of the Poisson manifold, 7,C' N7, is a Lagrangian subspace® of
the symplectic vector space <Tp5, (ws)p).

The submanifold theory of log-symplectic manifolds has not yet been addressed in the litera-
ture. One might be interested, for instance, in extending Weinstein’s Lagrangian neighborhood
theorem to the setting of log-symplectic manifolds. A related problem might be to describe the
deformations of a Lagrangian submanifold L of a log-symplectic manifold, and to determine the
moduli space of deformations.

2 An isotopy {h:} is called Hamiltonian if there exists a smooth family of functions H; : M — R such that
tx,w = dHy,

where {X;} is the time-dependent vector field associated with {h:}. A Hamiltonian diffecomorphism is a sym-
plectomorphism ¢ for which there exists a Hamiltonian isotopy {h:} such that ¢ = h;.

3That is, dim (7,C N T,S) = 1 dim(7},S) and =0.
at s, dim (7, pS) = 5 dim(T55) and (ws), (T CAT,S) X (T CAT,S)
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7.3 Generalizations

We defined log-symplectic structures as Poisson structures that degenerate linearly along a
hypersurface. Various generalizations are possible by allowing more complicated degeneracies.
For instance, the description of log-symplectic structures in terms of the b-tangent bundle
immediately leads to a notion slightly more general than that of log-symplectic manifolds,
in which the singular locus Z is no longer a smooth hypersurface. These structures also appear
under the name “log-symplectic”.

Definition 7.3.1. Fix a 2n-dimensional manifold M, and let Z be a union of smooth hypersur-
faces of normal crossing type? (i.e. locally there is a chart for which Z is a union of a collection
of coordinate hyperplanes in R?"). Let logZ denote the Lie algebroid whose sections are the
vector fields on M tangent to Z. A Poisson tensor II € I'(A2TM) is called log-symplectic if it
is the image under the anchor map of a closed non-degenerate section of A?(logZ)*.

In the same flavor, Lanius considered star log-symplectic structures, whose degeneracy loci
are locally modeled by a finite set of lines in the plane intersecting at a point. She classified
these structures on compact oriented manifolds in [Lan].

One can also consider higher order singularities. For a manifold M with specified hypersur-
face Z C M, we defined the b-tangent bundle to be the vector bundle whose sections are the
vector fields on M that are tangent to Z. Similarly, one can define a vector bundle, called the
bF-tangent bundle, whose sections are vector fields with “order k tangency to Z”, in some sense
that is made precise in [Sco]. If Z is locally given by y = 0, then one has

MTM_{QM ifpd¢ Z T:M ifpd¢ Z
M =

bR
: T M =
ﬂz+<w%> ifpez P {$Z+<ﬁ> ifpez

The sections of the exterior algebra of Y T* M are bF-forms. They form a complex, the cohomol-
ogy of which again allows a Mazzeo-Melrose type of decomposition theorem. A bF-symplectic
form is a closed b*-two-form of full rank, and the classical theorems from symplectic geometry
generalize further to the b¥-category. For instance, a b*-version of Moser’s theorem yields the
bF-Darboux theorem, which states that a b*-symplectic form w on (M, Z) locally looks like

d n
w= %/\dyl —i—dei/\dyi,
! i=2

where Z is locally defined by z; = 0 [MP].

A Poisson structure is said to be of bF-type if it is dual to a bF-symplectic form. On a
surface for instance, such Poisson structures are given by fIly, where Il is dual to a symplectic
form and f is locally the k-th power of a defining function for Z. Scott classified these Poisson
structures of b*-type on compact oriented surfaces in [Sco.

Of course, many aspects of log-symplectic structures still remain untreated in this thesis,
like the associated symplectic groupoids, integrable systems... [GMP2].

4This concept appeared for instance in [GLPR, p. 4], under the name “normal crossing divisor”.
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Chapter 8

Appendices

8.1 On skew-symmetric bilinear maps

Proposition 8.1.1 (Standard form). Let V' be an n-dimensional real vector space, and let
P :V xV =R be a skew-symmetric bilinear map. Then there exists a basis {v1,...,v,} with
respect to which the matriz [(v;, Uj)L‘j has the form

[0 1
-1 0 0
0 1
-1 0 0
[v] = 0 0 1
-1 0
0 0

In particular, the rank of ¢ is even.

Proof. ([Ca]) By induction on n = dim(V'). If ¢ = 0, then we are done. Otherwise, there exist
vy,vy € V with ¢(v1,v2) # 0. Rescaling these vectors, we can assume that (v, v9) = 1.
Let W :=span{vi,vo} and Wt :={v € V: (v,w) =0for all w € W}. Then V =W ¢ W+:

e WNW+ ={0}: Suppose that v = avy + bvs € W N WL, Then

{0 =(v,v1) = =b
0=1v(,v2) =a

= v =0.

e V =W + W+: Suppose that v € V has (v,v1) = ¢ and 9 (v, v9) = d. Then

v=(—cve+dvi) + (v+cvy —dvy) € W+ W,

By the induction hypothesis, there exists a basis {vs, ..., v,} of W+ with respect to which |y, 1
. . . . . 0 1\ .
is represented by a matrix of the desired form. Since |y has matrix <_ 1 O) with respect to

{v1,v2}, it follows that the basis {v1,ve,vs,...,v,} satisfies the criteria. O
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Lemma 8.1.2. Let V' be a 2n-dimensional real vector space, and ¥ : V xV — R a skew-
symmetric bilinear form. Then 1 is non-degenerate if and only if A" #£ 0.

Proof. Assume that v is non-degenerate. By Proposition 8.1.1, there exists a basis {e1, f1,...,¢€n, fn}
of V' with respect to which the matrix of v is

0 1
-1 0 0
[¥] =
0 0 1
- _1 0_

Then {ef Aef, fiAfT eaANfy: 1<i<j<n, 1<a,b<n}isabasisof A% V*, with respect
to which

n
w = Zef N f’i*'
=1

Indeed, on basis vectors of {e1, fi,...,en, fn}, we have
Rk gk o ewle) en(fD] L .
® (Zi:l €; /\fi)(ekvej)—; ei(er) ei(fF) =0=1(ex,€))-
o (ST ot n f Y (h iy = SO R B D] |
(Zi:l €; /\fz)(fkaf]) Z f](e;k) fj(fz*) 0 w(f/mfj)

1

7

o (T A f)enty) =

;’;Eﬁi = > sy Oirdij = Orj = Ylex, fj)-

@
I
_

M3
>
A/~
[
) o

N—"

Hence

A= A" (Z e A f) = D (e AMsa) Ao Ay A Fom)

1= oc€Sh

1
= NG AT A A (AT =l A S A A A S
oc€ESh

In particular,
A" (er, fi,. .., en,y fn) =n! : : : ' =n!#£0.

If ¢ is degenerate, then it has rank 2k for some £ < n. Proposition 8.1.1 gives a basis
{e1, f1,- - seks fiey .-y €n, fn} of V with respect to which the matrix of 1) is

0 1
-1 0 0
_ 0
[4] 0 01 :
-1 0
i 0 O2n—2k) |



where 02, o) is the zero matrix of dimensions (2n—2k) x (2n—2k). As earlier, 1) = Zle esNfr,
and the graded symmetry of A implies that

k
AMp = A" (Z e N fi*) = 0.

i=1

8.2 Calculus with differential forms

Lemma 8.2.1 (Cartan’s magic formula). If X € X(M) is a vector field and w € Q¥(M) is a
differential form, then
Lxw=dixw + txdw.

Proof. By induction on the degree k of w.

If feQO%M)=C>®(M), then dixf +ixdf = xdf =df(X)= £xf.

Assume that the formula holds for (k—1)-forms. By linearity of the operators £ x and dvx +txd,
it is enough to prove the formula for w = fdx; A --- A dxp. We write w = day A wy for
wi = fdxa A--- Adxg. Since £x is a degree zero derivation of A, we get

£xw= £X(da;1 /\wl) = (fxdl'l) Awy +dxy A £ xwr.
On the other hand, since d and tx are degree 1 resp. —1 derivations of A, we obtain

dixw + txdw = dix(dey Awy) + exd(dzy Awr)
=d((txdry) Nwi — dxy A txwr) — ex(dey A dwy)
= (duxdz) ANwi + (txdzy) A dwy + dzy Adexwy — (Lxdzy) A dwy + dzy A exdw
= (dfxz1) ANwi +dxy A £xw;
= (£xdzr1) Nwi +dx A £xwi,

where the penultimate equality holds by the case k = 0 and the induction hypothesis. In the
last equality, we used that £x and d commute. ]

Let {p:} be an isotopy on a manifold M with corresponding time-dependent vector field
{X:}, that is

d
%Pt = Xt O P¢. (81)

Recall that the Lie derivative of a differential form w € QF(M) with respect to the time-
dependent vector field {X;} is defined as

*

£x,w= prw.

dt |,
We have the following formula:

Lemma 8.2.2. Let {p;} be an isotopy on a manifold M with corresponding time-dependent
vector field {X;}. Then

d
ap:w = p; Lx,w for any w € Q(M).
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Proof. ([Ler]) For fixed t € [0, 1], we define operators 1 and Q2 on Q(M) by

d .
Ql(w) = %ptc‘%
Q2(w) = p; (£x,w).
We have to show that Q1 = Q2. To do this, it is enough to carry out the following steps:

1. Show that @)1 and Q2 coincide on functions.

2. Check that ; and Q2 commute with d.

3. Show that Q;(v A u) = Qi(v) A pfin+ (pfv) A Qi(w) for i =1,2.
For 1., we take f € C*°(M) and x € M. We compute

T D@ = (o) = (A oula)), Xelpula)) = (£x,) (0e@) = i (£x,5) (@),

where the second equality holds by the chain rule and Equation (8.1).

As for 2., we note that dop; = pfod. Applying d/dt to both sides and using that d/dt commutes
with d gives Q1 o d = d o ;. Similarly, using that d o pj = p;y od and that do Lx, = £Lx, od,
we get Qo o0d =do Q.

For 3., we first note that pj (v A p) = (p;v) A (pf ). Differentiating both sides with respect to ¢
gives

G0t n) = (56)) Aot + i~ (Gt
which shows 3. for Q1. Similarly, since £x,(v A p) = (£x,v) Ap+v A (£x,p1), we get
pr (£x,(v A p)) = (pi £x,v) A (pri) + (pfv) A (pr £x,10)
which shows 3. for Q2. O
We need the following improved version of Lemma 8.2.2.

Lemma 8.2.3. Let {p;} be an isotopy on a manifold M with corresponding time-dependent
vector field {X;}. Then

dt dt

for any smooth family of k-forms w;.

d dw
7p:tkwt = p;tk <£tht + t) ’

Proof. ([Ca]) If f(z,y) is a function of two variables, then we have by the chain rule

d d d
7f(t7t) = 5 f(l',t)—{— - f(tay)'
dt dx|,_, dy y=t
Therefore,
d Py w d pawt + d p;w
= — *wp + —
dt" dr|,_, L
* * dwy
= prEx,wi|,_, + P} m
. dw
= Pt <£tht + dtt> )
using Lemma 8.2.2 and linearity of pj. O
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8.3 Multivector fields

This lemma is Exercise 1.5 in Homework 1 of [FM].
Lemma 8.3.1. If f € C®°(M) and v € XK(M), then [f,v] = —iqv.

Proof. By induction on the degree k of v.
If g € XO(M) = C>°(M), then both [f, g] and t4g lie in X~1(M) = {0}. So [f,g] = —targ.
If X € X(M), then

[, X] ==X, fl=—£Lxf=—(df,X) = —tdf X.

Assuming that the formula holds for k-vector fields, let v € X*+1(M). In local coordinates, we
have

0 0 0 0
[fa 7/] = fa Z Vil,...,ikJer/\-.-/\ s = Z |:f7 Vilw"ﬂ’kﬁ»lﬁ/\"'/\ BT :|
11<... <041 11 Tk+1 01 <1 i1 Tht1
0 0 0 0
N PRI E DR N AT
’i1<§k+1 " e 61'7:1 axikJrl 150041 le axik+l
0 0
= Z Vit ,.ipg1 [f, Do ARERWAN £ ] (by the case k = 0)
1<l iy Ligi

= § Vig,eoyipt1

11 <o <lpy1 (

= ] < SR S o)
815742 axik+1 awll ' 12 8$’ik+1

—t 0 VANREIIVAN 9 + 0 AL i/\---/\ ?
@ 61‘12 a$ik+1 8:31-1 o axig axik+1

(by the case k = 1 and the induction hypothesis)

= Y v N
= A . T1yeeylht1 df 3.’Eik+1

11 <...<f41

9 0

. . 7
11 <...<tg41 1

= § Vit igt1

11<... <041

Next lemma is Exercise 1.7 in Homework 1 of [FM].

Lemma 8.3.2. Let ® : M — N be a smooth map. Let ¢! € X*(M), ¢ € X!(M),¢* € X¥(N)
and €% € XY(N). If ¢* and ¢* are ®-related, and &' and €2 are ®-related, then also [¢', €] and
[#2,€2] are ®-related.

Proof. Recall that to v € X/(M), we associate a multilinear map
v:C®(M)x---xC®(M) = C®(M):(f,..., f;) = vldfi,...,dfj).

We have

S(fro®,..., fro®)(z) = ¢p(du(fi0®),...,du(fr o ®))
= ¢y (do@) f1 0 da®, . .., da(z) fr © de®)
= [(de®) ¢y ] (do) f1s-- -+ dag) fr),

141



whereas
(?(fl, s fr)o ‘I’) (@) = Q2(f1, -, ) (®(2)) = B3y (o) f1, - - - o) fi)-

Since by assumption, ¢<21>(x) = (d, )¢, we get

PH(fro®, ..., fro®) = ¢2(fi,..., fr)o®, (8.2)

and similarly

E(fro®,.... fro®) =& (f1,.... fr) o ®. (8.3)
Next, using Equations (8.2) and (8.3), we get!

(¢ o 52)q>($) (dog) f1, - - - do(z) frri-1)
= Z SgH(U)? ?(fo‘(l)a s 7fa‘(k))7 fo‘(k+1)7 SR fO‘(k“i’l*l)) ((I)({L’))

= (¢1 o gl)x (dtb(x)fl od,®,... 7d¢>(x)fk+lfl o dzq))
= [(d2®) (" 0 &N)a] (o) f1, - - Ay frri-1)-

Hence ¢?0&2 and ¢! o' are ®-related, and the computation of Equations (8.2) and (8.3) shows
that

Ploll(fio®,..., firim10®) = @20 E2(f1,. .., fari—1) 0 .
Similarly,

log!(fio®, ..., furim10®) =& 0 (f1,. .., frrim1) 0 .
At last,

[0, o) (da@) f1s-- - o) feti-1)

(0% © ) g0y (o) f1s - doe) fieri—1) — (FDEDED(E 0 0%) g (dayfr - do) firi-1)
=¢202(f1,- - froi—1)(®(2)) — (1) FDEN2 0 G2 frpi1)(D(x)

=¢lo&l(fio®,..., frp10®)(z) — (~)F VDL o gL(fod, ..., fri10®)(z)

= (¢'0&"), (de(fro®),. .., du(fryi-10®)) — (~1)F VI (o gl) (dp(fro®),..., de(frii1 0 P))
= (¢" 0 &"), (do(w)f10de®, ... do(z) frti—1 0 d®)

— (~)®DED (o @) (dggy f1 0 da®, ..., deg) frri—1 © de®)

= [0, €', (do@) f1 o de®, ..., do@) fepio1 © de®)

= ((de®) [¢",€"].) (do) f1s- - - daa) frri—1) »

which finishes the proof. O

'Recall that for multivector fields ¢ € X*(M),v € X'(M), we defined ¢ o v in Definition 2.2.6.
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8.4 Hadamard’s Lemma
The proofs below are by [Vor].

Lemma 8.4.1 (Hadamard’s Lemma). For any smooth function f € C*°(R™) and any xo € R™,
there is an expansion

f(x) = flwo) + ) (' —af)gi(x)
=1

where g; € C*°(R™) are smooth functions.?

Proof. Holding x fixed, put h(t) = f (xg + t(z — x9)). Using the fundamental theorem of cal-
culus and the chain rule, we get

0 =1
n 1
=) (2" — ) ) dt.
=1 0
1
The lemma follows by putting g;(z) := [ g IZ (xo + t(x — x0)) dt. O
0

Corollary 8.4.2. For any smooth function f € C*°(R™) and any xo € R™, there is an expansion

n

(z0) + Z (' — 2b) (27 — ) gij (),

1,j=1

f(x) = f(zo —I—Z:U—azo

where gi; € C*°(R™) are smooth functions.

Proof. Hadamard’s Lemma gives that f(z) = f(zo)+> (2" —z{)gi(x). Applying Hadamard’s
Lemma once more on the g;, we obtain

f(z) = f(x0) +Z$_5’50az+zx_$0 _370)9%]()

,j=1
where a; € R are numbers and g;; € C°°(R") are functions. Applying the partial derivative a?ci
at xo on both sides yields a; = %(mo). O

8.5 Adapted distance functions

This section complements Lemma 4.1.16 and justifies some of the claims made there. We show
that any vector bundle admits a smooth metric, and we explicitly construct an adapted distance
function A as mentioned in Lemma 4.1.16.

Lemma 8.5.1. Let V be a vector space with inner products gi,...,gn. Then a positive linear
combination of g1,...,gn 1s still an inner product on V.
2We denote the coordinates z = (x',...,2™) by upper indices to avoid double lower indices.
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Proof. Choose ay,...,an, € Rar and consider g := Y ", a;g;. It is clear that ¢ is bilinear
and symmetric, since the g; are. We check that g is positive-definite. Using that the g; are
positive-definite and that the a; are positive, we have

(Za@) vv—O@Zazglvv)—O@ Vi: aigi(v,v) =0& Yi: gi(v,v)=0<v=0.
=1

d

Lemma 8.5.2. A wvector bundle Il : E — M has a metric.

Proof. Take an open cover {U;} of M that gives local trivializations ¢; : II"*(U;) — U; x R"
of E. Then the standard inner product (-,-) on R™ induces a metric g; on the trivial bundles
=(U;) by

gi(¢;1(x7v)7¢i_l(wi)) = <U)w>'

Let {¢; : U; — [0,1]} be a partition of unity subordinate to the cover {U;}. Define g := ). 1;g;.
So for e, ¢’ with II(e) = II(e’) = x, we have

Z¢z gzee

This is a metric on £ by Lemma 8.5.1 above. O

Let (M, Z) be a b-manifold. We now construct an adapted distance function A as mentioned
in Lemma 4.1.16. Fix a tubular neighborhood £ C NZ of Z in the normal bundle, and let
p : E — Z be the projection. By the above, we can take a metric ¢ on E, and we have
correspondingly a continuous distance function

|- |l E >R :z— g(z,x).
Define subsets
K:={zecE: |z <1/2} =|-[7"([0,1/2])

and
U={zeE: |zl <1} =-[7"([0,1)).

Then K is closed and U is open in E. Recall the smooth Urysohn lemma [Muk, Lemma 2.1.17]:

Lemma 8.5.3 (Smooth Urysohn Lemma). If K C U C E, where K is closed and U is open,
then there is a smooth function f: E — R such that 0 < f <1, flx =1 and supp(f) C U.

Gluing such f with the zero function, we obtain f : M — R such that f|xg = 1 and
supp(f) € U. We now define A : M — R by A = f|| - || + (1 — f). Then it is clear that
AMz) = ||z|| for z € E with ||z|| <1/2,and A\=1on M \ {z € E: ||z|| < 1}. Restricting X to
M \ Z gives a function as required in Lemma 4.1.16. We call this a distance function adapted
to E.
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8.6 A Poisson version of Cartan’s magic formula

We present a proof of the following lemma, which we used in Theorem 4.3.8. It is stated without
proof in [MO].

Lemma 8.6.1. Let Il € T'(A2TM) be a Poisson bivector on M, and 8 € QY(M) a closed
one-form. For a multivector field & € X¥(M), we have

va(dn(§)) + dies(§)) = £z (8.4)

Proof. We check that (8.4) holds in local coordinates, and we proceed by induction on the
degree of the multivector field. First consider f € XO(M) = C*°(M). We write 8 = 3", gidz;

and )
= Z i 8 8:6 Oz
i<j J
Then
0 o P
1I; 1L 11, ’
- (Z ™ O a@"j) 2 Migts (aml oz > 21 <g ~ Y9z, >
l<] ’L<] l<j
9 )
- Z 7.797' - Z H],l.gla ] = Z ng + Z ’ng = ZHZ,]Q’L%
1<J i<j 07
Hence
Lt ﬁ)f_df Hﬁ ZH,jg’L

Now dri(¢(f)) = dn(0) = 0 and

wa(dn(f)) = g (I, f]) = v (—tarll) = — (ZH <§:£8(Z’g - gg@ii))

1<J
of of af 3f
= ZHi,j%gi - ZH’L'J%Q‘]' = ZH ,]gz Z ]’Lgl ‘
i<j i<j ¢ i<j j<i
af
=1 ng +Z 739% = ZHi’jgi%'
1<J i,J J

So (8.4) holds on functions. Now let X =5, fia%i € X'(M) and II, 3 given in coordinates as
before. By the above, we know that

0 0
I*(8) = ZHz‘,jQiaTCj => (Z Hi,jQi) .

Then

7

0 0 o0 I kgi) 0O
_ an‘gi afk. - fj (Zé ‘,kg ) 5
ik - €T Tk € Tk

0 0
; <ZH’L]9Z> %’;fkaxk}

7
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- Of O Mgy Do)
an]glaw Oy, ZfJZ( Ox; Z+Hz’k8:1:j Oxy,

0,7,k
8fk: aﬂzk 0
_lz]; ”glax O lzj%fj oz gzax ij ’kaw Oz’

On the other hand, since tg(X) = >, frgk, we get

dr

II kagk] - Zkfkgk)n

_ _ZH”< (2o frgr) 0 8(Zkfkgk)aaxi>

o0x; Ox: o0x;
i< i J J

T (e ) £ T (o) 2

1<j 1<J
_Z;Hl]gﬁcgk 0 +ZZH”fkggkail
1<)
dgr 0
_Zznzja gki_ZZHZJfkagkax
i<j k i<j k i
N O a Ogx 0
—;CII ; ”f’fa O

Next, we have

) 9
m 7 I,
,;f%] lz ey Sl 8%]
o 9

— _Z 9 — A i + 1L 5 £ i A i

1<j

0 0

:_ggfaari”am +;H”<£ail <ka8x )) aa~
e 1 [0

- R Ny 3 50 e M
g (zzfazk)

:_;;f’“aarj;”axz +§;H”gikamk aij
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of 0 0
2.2 Mg, Ay

i<j k

Re-indexing, we have

afk afk 8fk 0
Zzni’j%jam 83: ZZ ”873:1-836 83: ZZ Y9 s Ox 8:6]-’

i<j k k k
so that oL, o7 5
OlLij k
== fig 81‘1 +Z " i 8a:k N oz
i<j k .5,k
Hence
oll; ; ‘ 8 Ofy 3 0
K Z;Zk:f ( o, )+Z o < O gj@ﬂfk)
_ Ol Ol
N ;gfk oxy gzax szk oxy gjaa:
O fr 0 Of 0
2 i g O ZHJ@ 9 0,
i,5,k i,5,k
B 8H” ,Ofk 0 B 'Ofk ' 0
ka 71 ZHZ’]%%ETT]' ZHZ,J%QJT%'
1,7,k 0,4,k 0,4,k
So
0 8 oIl; 0
ta(dn(X)) + du(ep(X ZH,Ja g +2szfk Ik ka g 9%,

1.]1
Of 3 3fk 8
T M e % g, ~ Z]: ’Jax,»gjaxk

ng 8 o1, ,J ofy 0
—ZH,]fk ka ]8x Zﬂi,j%gjaiwk-

1,3,k 1,5,k

We now inspect
Ofx 0 8sz 5]
X) = g IL ;g =—— E ; E i,
£Hﬁ(6)( ) vy 79 Oxj Oxy, vy J 830 vy ;1 ké?x 8$k

Re-indexing gives

oIl o1l OMs oIl
ka J Zfz kJ Zf] 83;‘12 ' ij k

Ox;j 8xk
7‘77 7]7 7‘77 7]7

and

L I L 1 I, jgi .
Z 7 O, 9i oxy, Z 119G, Ox; axk Z W9, Ox;j fm
Z7J7k Z7J7k ,],k‘
Since (3 is closed, we have

0=ds=d <Zgidx7;> =" dgi A dai = ZZ Ogi da; N da
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= Z Ogi dxj Adz; + Z 891 dxj A du;

1<j J<t
0 i
_Z gjdxz/\d —I-Zagal:zrj/\dxZ
J<t 7<i
B dgi  0gj , '
— Z <6acj 8:@) dx; N dx;.
1<
Hence 9 5
gi gj ..
= fi 114, 7.
oz, oz, or all 4,

This then implies

g 0 dg; 0 dg; 0
ZH”f’“ax or; an’jfi%aixk =2 Meify asz oz,
0,7 0,4,k

4,5,k

dg; 0 dg; 0

—— - _ I, f 22 =

Z ki, dz; Oz, Z k] Oxj Oxy,
3,5,k 4,5,k

So we conclude that
L1155 (X) = 1a(din(X)) + du(15(X)).

Now assume (8.4) holds for (k — 1)-vector fields and let & € X*(M). Since both sides of (8.4)
are R-linear, we may assume that

0 1o} 0
— N— A AN —
§ f8$1 Bxg 8xk
We write this as
0 0 0
- ith & = f— — k=1 ]
& D2, /\51 with &; faw2 A A oz eX ( )

+ il A [dn(Lg(&)) + 3 (dﬂ(fl))]

0
= <£m(g) 8951) NE+ o A (fnu(5)§1>
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0
= L) <0LE1 A fl)

= £nﬁ(/3)§-

8.7 On modular vector fields

In Section 6.2, we used the following result. Its proof goes after [LPV, Proposition 4.14].

Theorem 8.7.1. Let M?"*! be an orientable manifold with a corank-one Poisson structure I1.
Then the modular vector field X% is tangent to the symplectic leaves of M, for any choice of
volume form Q.

Proof. Choose p € M and let (U, qi,...,qn,P1,--.,Pn,2) be splitting coordinates around p, so
that

Z o apl (8.5)

We consider the volume form A on U, deﬁned by
A:=dg Ndpr N -+ ANdg, A dpp N dz,

and for each k € {1,...,n} we denote

Ap = /\(dqi Ndp;)| Ndz.
itk

Then for k € {1,...,n} and for f € C°°(M) we have:
£x,(dgr, N dpy) = £x,(dgr) A dp + dgi N £x,(dpr)
=d(£x,qc) N dpx + dgp N d (£x,pr)
=d(Xy(ar)) A dpr + dgp N d (X (pr))
- d (af> /\dpk—kqu/\d(af) |
bk, o

Here we used Lemma 2.7.4 to find that

of of
Xf(Qk) = _aipk and Xf(Pk) = Biqk

Therefore, for all k € {1,...,n}, we find that A, A £x,(dgx A dpg) equals

of of
)\k/\<qu/\d<8qk>+dp /\d<a k))

=dg Ndp1 N\ --- ANdqg—1 Ndpg—1 ANdge1 ANdpgi1 A - Adgn A dpn A dzA

dqe A Z i Zn: 62f d
o D000 4 ap aqk T 9200,

+ dpr. A Z 8 Z 82f dz
Pk Ba:op ap 8pk * 9z0pn
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2
=dgi1 Ndpr A+ Ndgg—1 N dpg—1 N dgg1 A dpgyr A -+ Adgn A dpp A dz A dgg A

d
OprOqy, Pr
2

d
Oqi.0py o

+dq Ndpr A Adgr—1 AN dpg—1 A dgi1 A dprga A Adgn A dpn A dz A dpy A
= 0.
It then follows that

£XfA:£Xf(dq1/\dpl/\---/\dqn/\dpn/\dz)

:fof(qu/\dpk)/\)\k+dql/\dpl/\--~/\qu/\dpk/\£xf(dz)
k=1
qu1/\dplA--'/\qu/\dpk/\fo(dz)

:O7

using Lemma 2.7.4 and (8.5) to see that £x,(dz) = 0. It follows that for the volume form A,
the modular vector field is zero on U. Hence for an arbitrary volume form on U, the modular
vector field is Hamiltonian on U, in particular tangent to the symplectic leaves. O
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